首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Graph Theory》2018,89(3):327-340
In this article, we are concerned with sufficient conditions for the existence of a ‐factor. We prove that for , there exists such that if a graph G satisfies for all , then G has a ‐factor, where is the number of components C of with . On the other hand, we construct infinitely many graphs G having no ‐factor such that for all .  相似文献   

2.
Thomassen proved that every ‐connected graph G contains an induced cycle C such that is k‐connected, establishing a conjecture of Lovász. In general, one could ask the following question: For any positive integers , does there exist a smallest positive integer such that for any ‐connected graph G, any with , and any , there is an induced cycle C in such that and is l‐connected? The case when is a well‐known conjecture of Lovász that is still open for . In this article, we prove and . We also consider a weaker version: For any positive integers , is there a smallest positive integer such that for every ‐connected graph G and any with , there is an induced cycle C in such that is l‐connected? The case when was studied by Thomassen. We prove and .  相似文献   

3.
《Journal of Graph Theory》2018,87(4):660-671
If G is a graph and is a set of subgraphs of G, then an edge‐coloring of G is called ‐polychromatic if every graph from gets all colors present in G. The ‐polychromatic number of G, denoted , is the largest number of colors such that G has an ‐polychromatic coloring. In this article, is determined exactly when G is a complete graph and is the family of all 1‐factors. In addition is found up to an additive constant term when G is a complete graph and is the family of all 2‐factors, or the family of all Hamiltonian cycles.  相似文献   

4.
Let and denote the second largest eigenvalue and the maximum number of edge‐disjoint spanning trees of a graph G, respectively. Motivated by a question of Seymour on the relationship between eigenvalues of a graph G and bounds of , Cioab? and Wong conjectured that for any integers and a d‐regular graph G, if , then . They proved the conjecture for , and presented evidence for the cases when . Thus the conjecture remains open for . We propose a more general conjecture that for a graph G with minimum degree , if , then . In this article, we prove that for a graph G with minimum degree δ, each of the following holds.
  • (i) For , if and , then .
  • (ii) For , if and , then .
Our results sharpen theorems of Cioab? and Wong and give a partial solution to Cioab? and Wong's conjecture and Seymour's problem. We also prove that for a graph G with minimum degree , if , then the edge connectivity is at least k, which generalizes a former result of Cioab?. As corollaries, we investigate the Laplacian and signless Laplacian eigenvalue conditions on and edge connectivity.  相似文献   

5.
《Journal of Graph Theory》2018,88(2):284-293
For a hypergraph H, let denote the minimum vertex degree in H. Kühn, Osthus, and Treglown proved that, for any sufficiently large integer n with , if H is a 3‐uniform hypergraph with order n and then H has a perfect matching, and this bound on is best possible. In this article, we show that under the same conditions, H contains at least pairwise disjoint perfect matchings, and this bound is sharp.  相似文献   

6.
《Journal of Graph Theory》2018,88(1):131-145
For a sequence d of nonnegative integers, let and be the sets of all graphs and forests with degree sequence d, respectively. Let , , , and where is the domination number and is the independence number of a graph G. Adapting results of Havel and Hakimi, Rao showed in 1979 that can be determined in polynomial time. We establish the existence of realizations with , and with and that have strong structural properties. This leads to an efficient algorithm to determine for every given degree sequence d with bounded entries as well as closed formulas for and .  相似文献   

7.
For a graph , let denote the minimum number of pairwise edge disjoint complete bipartite subgraphs of G so that each edge of G belongs to exactly one of them. It is easy to see that for every graph G , , where is the maximum size of an independent set of G . Erd?s conjectured in the 80s that for almost every graph G equality holds, that is that for the random graph , with high probability, that is with probability that tends to 1 as n tends to infinity. The first author showed that this is slightly false, proving that for most values of n tending to infinity and for , with high probability. We prove a stronger bound: there exists an absolute constant so that with high probability.  相似文献   

8.
《Journal of Graph Theory》2018,87(3):333-346
Brualdi and Hollingsworth conjectured that, for even n, in a proper edge coloring of using precisely colors, the edge set can be partitioned into spanning trees which are rainbow (and hence, precisely one edge from each color class is in each spanning tree). They proved that there always are two edge disjoint rainbow spanning trees. Krussel, Marshall, and Verrall improved this to three edge disjoint rainbow spanning trees. Recently, Carraher, Hartke and the author proved a theorem improving this to rainbow spanning trees, even when more general edge colorings of are considered. In this article, we show that if is properly edge colored with colors, a positive fraction of the edges can be covered by edge disjoint rainbow spanning trees.  相似文献   

9.
《Journal of Graph Theory》2018,88(3):507-520
In 2015, Bryant, Horsley, Maenhaut, and Smith, generalizing a well‐known conjecture by Alspach, obtained the necessary and sufficient conditions for the decomposition of the complete multigraph into cycles of arbitrary lengths, where I is empty, when is even and I is a perfect matching, when is odd. Moreover, Bryant in 2010, verifying a conjecture by Tarsi, proved that the obvious necessary conditions for packing pairwise edge‐disjoint paths of arbitrary lengths in are also sufficient. In this article, first, we obtain the necessary and sufficient conditions for packing edge‐disjoint cycles of arbitrary lengths in . Then, applying this result, we investigate the analogous problem of the decomposition of the complete uniform multihypergraph into Berge cycles and paths of arbitrary given lengths. In particular, we show that for every integer , and , can be decomposed into Berge cycles and paths of arbitrary lengths, provided that the obvious necessary conditions hold, thereby generalizing a result by Kühn and Osthus on the decomposition of into Hamilton Berge cycles.  相似文献   

10.
In this article we prove a new result about partitioning colored complete graphs and use it to determine certain Ramsey numbers exactly. The partitioning theorem we prove is that for , in every edge coloring of with the colors red and blue, it is possible to cover all the vertices with k disjoint red paths and a disjoint blue balanced complete ‐partite graph. When the coloring of is connected in red, we prove a stronger result—that it is possible to cover all the vertices with k red paths and a blue balanced complete ‐partite graph. Using these results we determine the Ramsey number of an n‐vertex path, , versus a balanced complete t‐partite graph on vertices, , whenever . We show that in this case , generalizing a result of Erd?s who proved the case of this result. We also determine the Ramsey number of a path versus the power of a path . We show that , solving a conjecture of Allen, Brightwell, and Skokan.  相似文献   

11.
《Journal of Graph Theory》2018,87(4):430-442
For , a smallest graph whose automorphism group is isomorphic to the generalized quaternion group is constructed. If , then such a graph has vertices and edges. In the special case when , a smallest graph has 16 vertices but 44 edges.  相似文献   

12.
We study minimum degree conditions for which a graph with given odd girth has a simple structure. For example, the classical work of Andrásfai, Erd?s, and Sós implies that every n‐vertex graph with odd girth and minimum degree bigger than must be bipartite. We consider graphs with a weaker condition on the minimum degree. Generalizing results of Häggkvist and of Häggkvist and Jin for the cases and 3, we show that every n‐vertex graph with odd girth and minimum degree bigger than is homomorphic to the cycle of length . This is best possible in the sense that there are graphs with minimum degree and odd girth that are not homomorphic to the cycle of length . Similar results were obtained by Brandt and Ribe‐Baumann.  相似文献   

13.
Let denote the set of lengths of cycles of a graph G of order n and let denote the complement of G. We show that if , then contains all odd ? with and all even ? with , where and denote the maximum odd and the maximum even integer in , respectively. From this we deduce that the set contains at least integers, which is sharp.  相似文献   

14.
Král' and Sgall (J Graph Theory 49(3) (2005), 177–186) introduced a refinement of list coloring where every color list must be subset to one predetermined palette of colors. We call this ‐choosability when the palette is of size at most ? and the lists must be of size at least k . They showed that, for any integer , there is an integer , satisfying as , such that, if a graph is ‐choosable, then it is C‐choosable, and asked if C is required to be exponential in k . We demonstrate it must satisfy . For an integer , if is the least integer such that a graph is ‐choosable if it is ‐choosable, then we more generally supply a lower bound on , one that is super‐polynomial in k if , by relation to an extremal set theoretic property. By the use of containers, we also give upper bounds on that improve on earlier bounds if .  相似文献   

15.
《Journal of Graph Theory》2018,88(2):294-301
Suppose is a loopless graph and is the graph obtained from G by subdividing each of its edges k () times. Let be the set of all spanning trees of G, be the line graph of the graph and be the number of spanning trees of . By using techniques from electrical networks, we first obtain the following simple formula: Then we find it is in fact equivalent to a complicated formula obtained recently using combinatorial techniques in [F. M. Dong and W. G. Yan, Expression for the number of spanning trees of line graphs of arbitrary connected graphs, J. Graph Theory. 85 (2017) 74–93].  相似文献   

16.
A classical theorem of Brooks in graph coloring theory states that every connected graph G has its chromatic number less than or equal to its maximum degree , unless G is a complete graph or an odd cycle in which case is equal to . Brooks' theorem has been extended to list colorings by Erd?s, Rubin, and Taylor (and, independently, by Vizing) and to some of their variants such as list T‐colorings and pair‐list colorings. The bichromatic number is a relatively new parameter arisen in the study of extremal hereditary properties of graphs. This parameter simultaneously generalizes the chromatic number and the clique covering number of a graph. In this article, we prove a theorem, akin to that of Brooks, which states that every graph G has its bichromatic number less than or equal to its bidegree , unless G belongs to a set of specified graphs in which case is equal to .  相似文献   

17.
《Journal of Graph Theory》2018,87(3):347-355
Ther‐dynamic choosability of a graph G, written , is the least k such that whenever each vertex is assigned a list of at least k colors a proper coloring can be chosen from the lists so that every vertex v has at least neighbors of distinct colors. Let ch(G) denote the choice number of G. In this article, we prove when is bounded. We also show that there exists a constant C such that the random graph with almost surely satisfies . Also if G is a triangle‐free regular graph, then we have .  相似文献   

18.
《Journal of Graph Theory》2018,88(4):577-591
Given a zero‐sum function with , an orientation D of G with in for every vertex is called a β‐orientation. A graph G is ‐connected if G admits a β‐orientation for every zero‐sum function β. Jaeger et al. conjectured that every 5‐edge‐connected graph is ‐connected. A graph is ‐extendable at vertex v if any preorientation at v can be extended to a β‐orientation of G for any zero‐sum function β. We observe that if every 5‐edge‐connected essentially 6‐edge‐connected graph is ‐extendable at any degree five vertex, then the above‐mentioned conjecture by Jaeger et al. holds as well. Furthermore, applying the partial flow extension method of Thomassen and of Lovász et al., we prove that every graph with at least four edge‐disjoint spanning trees is ‐connected. Consequently, every 5‐edge‐connected essentially 23‐edge‐connected graph is ‐extendable at any degree five vertex.  相似文献   

19.
The Erd?s–Lovász Tihany conjecture asserts that every graph G with ) contains two vertex disjoint subgraphs G 1 and G 2 such that and . Under the same assumption on G , we show that there are two vertex disjoint subgraphs G 1 and G 2 of G such that (a) and or (b) and . Here, is the chromatic number of is the clique number of G , and col(G ) is the coloring number of G .  相似文献   

20.
We study the following problem: given a real number k and an integer d, what is the smallest ε such that any fractional ‐precoloring of vertices at pairwise distances at least d of a fractionally k‐colorable graph can be extended to a fractional ‐coloring of the whole graph? The exact values of ε were known for and any d. We determine the exact values of ε for if , and if , and give upper bounds for if , and if . Surprisingly, ε viewed as a function of k is discontinuous for all those values of d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号