首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of Graph Theory》2018,88(1):110-130
We prove that every 3‐connected 2‐indivisible infinite planar graph has a 1‐way infinite 2‐walk. (A graph is 2‐indivisible if deleting finitely many vertices leaves at most one infinite component, and a 2‐walk is a spanning walk using every vertex at most twice.) This improves a result of Timar, which assumed local finiteness. Our proofs use Tutte subgraphs, and allow us to also provide other results when the graph is bipartite or an infinite analog of a triangulation: then the prism over the graph has a spanning 1‐way infinite path.  相似文献   

2.
Suppose G is a simple connected n‐vertex graph. Let σ3(G) denote the minimum degree sum of three independent vertices in G (which is ∞ if G has no set of three independent vertices). A 2‐trail is a trail that uses every vertex at most twice. Spanning 2‐trails generalize hamilton paths and cycles. We prove three main results. First, if σ3G)≥ n ‐ 1, then G has a spanning 2‐trail, unless G ? K1,3. Second, if σ3(G) ≥ n, then G has either a hamilton path or a closed spanning 2‐trail. Third, if G is 2‐edge‐connected and σ3(G) ≥ n, then G has a closed spanning 2‐trail, unless G ? K2,3 or K (the 6‐vertex graph obtained from K2,3 by subdividing one edge). All three results are sharp. These results are related to the study of connected and 2‐edge‐connected factors, spanning k‐walks, even factors, and supereulerian graphs. In particular, a closed spanning 2‐trail may be regarded as a connected (and 2‐edge‐connected) even [2,4]‐factor. © 2004 Wiley Periodicals, Inc. J Graph Theory 45: 298–319, 2004  相似文献   

3.
In this paper, we prove that an m-connected graph G on n vertices has a spanning tree with at most k leaves (for k ≥ 2 and m ≥ 1) if every independent set of G with cardinality m + k contains at least one pair of vertices with degree sum at least nk + 1. This is a common generalization of results due to Broersma and Tuinstra and to Win.  相似文献   

4.
In this article, we prove that a line graph with minimum degree δ≥7 has a spanning subgraph in which every component is a clique of order at least three. This implies that if G is a line graph with δ≥7, then for any independent set S there is a 2‐factor of G such that each cycle contains at most one vertex of S. This supports the conjecture that δ≥5 is sufficient to imply the existence of such a 2‐factor in the larger class of claw‐free graphs. It is also shown that if G is a claw‐free graph of order n and independence number α with δ≥2n/α?2 and n≥3α3/2, then for any maximum independent set S, G has a 2‐factor with α cycles such that each cycle contains one vertex of S. This is in support of a conjecture that δ≥n/α≥5 is sufficient to imply the existence of a 2‐factor with α cycles, each containing one vertex of a maximum independent set. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 251–263, 2012  相似文献   

5.
An mcovering of a graph G is a spanning subgraph of G with maximum degree at most m. In this paper, we shall show that every 3‐connected graph on a surface with Euler genus k ≥ 2 with sufficiently large representativity has a 2‐connected 7‐covering with at most 6k ? 12 vertices of degree 7. We also construct, for every surface F2 with Euler genus k ≥ 2, a 3‐connected graph G on F2 with arbitrarily large representativity each of whose 2‐connected 7‐coverings contains at least 6k ? 12 vertices of degree 7. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 26–36, 2003  相似文献   

6.
A noncomplete graph G is called an (n, k)‐graph if it is n‐connected and GX is not (n − |X| + 1)‐connected for any XV(G) with |X| ≤ k. Mader conjectured that for k ≥ 3 the graph K2k + 2 − (1‐factor) is the unique (2k, k)‐graph. We settle this conjecture for strongly regular graphs, for edge transitive graphs, and for vertex transitive graphs. © 2000 John Wiley & Sons, Inc. J Graph Theory 36: 35–51, 2001  相似文献   

7.
A k‐tree is a chordal graph with no (k + 2)‐clique. An ?‐tree‐partition of a graph G is a vertex partition of G into ‘bags,’ such that contracting each bag to a single vertex gives an ?‐tree (after deleting loops and replacing parallel edges by a single edge). We prove that for all k ≥ ? ≥ 0, every k‐tree has an ?‐tree‐partition in which each bag induces a connected ‐tree. An analogous result is proved for oriented k‐trees. © 2006 Wiley Periodicals, Inc. J Graph Theory 53: 167–172, 2006  相似文献   

8.
《Quaestiones Mathematicae》2013,36(3):339-348
Abstract

For n a positive integer and v a vertex of a graph G, the nth order degree of v in G, denoted by degnv, is the number of vertices at distance n from v. The graph G is said to be nth order regular of degree k if, for every vertex v of G, degnv = k. The following conjecture due to Alavi, Lick, and Zou is proved: For n ≥ 2, if G is a connected nth order regular graph of degree 1, then G is either a path of length 2n—1 or G has diameter n. Properties of nth order regular graphs of degree k, k ≥ 1, are investigated.  相似文献   

9.
A graph G = (V, E) is k-edge-connected if for any subset E′ ⊆ E,|E′| < k, GE′ is connected. A dk-tree T of a connected graph G = (V, E) is a spanning tree satisfying that ∀vV, dT(v) ≤ + α, where [·] is a lower integer form and α depends on k. We show that every k-edge-connected graph with k ≥ 2, has a dk-tree, and α = 1 for k = 2, α = 2 for k ≥ 3. © 1998 John Wiley & Sons, Inc. J Graph Theory 28: 87–95, 1998  相似文献   

10.
We prove that every connected graph G contains a tree T of maximum degree at most k that either spans G or has order at least kδ(G) + 1, where δ(G) is the minimum degree of G. This generalizes and unifies earlier results of Bermond [1] and Win [7]. We also show that the square of a connected graph contains a spanning tree of maximum degree at most three.  相似文献   

11.
Let γ(G) be the domination number of graph G, thus a graph G is k‐edge‐critical if γ (G) = k, and for every nonadjacent pair of vertices u and υ, γ(G + uυ) = k?1. In Chapter 16 of the book “Domination in Graphs—Advanced Topics,” D. Sumner cites a conjecture of E. Wojcicka under the form “3‐connected 4‐critical graphs are Hamiltonian and perhaps, in general (i.e., for any k ≥ 4), (k?1)‐connected, k‐edge‐critical graphs are Hamiltonian.” In this paper, we prove that the conjecture is not true for k = 4 by constructing a class of 3‐connected 4‐edge‐critical non‐Hamiltonian graphs. © 2005 Wiley Periodicals, Inc.  相似文献   

12.
We introduce and study backbone colorings, a variation on classical vertex colorings: Given a graph G = (V,E) and a spanning subgraph H of G (the backbone of G), a backbone coloring for G and H is a proper vertex coloring V → {1,2,…} of G in which the colors assigned to adjacent vertices in H differ by at least two. We study the cases where the backbone is either a spanning tree or a spanning path. We show that for tree backbones of G the number of colors needed for a backbone coloring of G can roughly differ by a multiplicative factor of at most 2 from the chromatic number χ(G); for path backbones this factor is roughly . We show that the computational complexity of the problem “Given a graph G, a spanning tree T of G, and an integer ?, is there a backbone coloring for G and T with at most ? colors?” jumps from polynomial to NP‐complete between ? = 4 (easy for all spanning trees) and ? = 5 (difficult even for spanning paths). We finish the paper by discussing some open problems. © 2007 Wiley Periodicals, Inc. J Graph Theory 55: 137–152, 2007  相似文献   

13.
A triangle‐free graph G is called k‐existentially complete if for every induced k‐vertex subgraph H of G, every extension of H to a ‐vertex triangle‐free graph can be realized by adding another vertex of G to H. Cherlin  11 , 12 asked whether k‐existentially complete triangle‐free graphs exist for every k. Here, we present known and new constructions of 3‐existentially complete triangle‐free graphs.  相似文献   

14.
The average distance μ(G) of a connected graph G of order n is the average of the distances between all pairs of vertices of G, i.e., μ(G) = ()−1 Σ{x,y}⊂V(G) dG(x, y), where V(G) denotes the vertex set of G and dG(x, y) is the distance between x and y. We prove that every connected graph of order n and minimum degree δ has a spanning tree T with average distance at most . We give improved bounds for K3‐free graphs, C4‐free graphs, and for graphs of given girth. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 1–13, 2000  相似文献   

15.
Recently, Mader [ 7 ] proved that every 2k‐connected graph with girth g(G) sufficiently large is k‐linked. We show here that g(G ≥ 11 will do unless k = 4,5. If k = 4,5, then g(G) ≥ 19 will do. © 2003 Wiley Periodicals, Inc. J Graph Theory 45: 48–50, 2004  相似文献   

16.
《Journal of Graph Theory》2018,89(3):250-265
A vertex dominating path in a graph is a path P such that every vertex outside P has a neighbor on P. In 1988 H. Broersma [5] stated a result implying that every n‐vertex k‐connected graph G such that contains a vertex dominating path. We provide a short, self‐contained proof of this result and further show that every n‐vertex k‐connected graph such that contains a vertex dominating path of length at most , where T is a minimum dominating set of vertices. An immediate corollary of this result is that every such graph contains a vertex dominating path with length bounded above by a logarithmic function of the order of the graph. To derive this result, we prove that every n‐vertex k‐connected graph with contains a path of length at most , through any set of T vertices where .  相似文献   

17.
Let G be a graph of order n and k ≥ 0 an integer. It is conjectured in [8] that if for any two vertices u and v of a 2(k + 1)‐connected graph G,d G (u,v) = 2 implies that max{d(u;G), d(v;G)} ≥ (n/2) + 2k, then G has k + 1 edge disjoint Hamilton cycles. This conjecture is true for k = 0, 1 (see cf. [3] and [8]). It will be proved in this paper that the conjecture is true for every integer k ≥ 0. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 8–20, 2000  相似文献   

18.
In this paper, we give a sufficient condition for a graph to have a degree bounded spanning tree. Let n ≥ 1, k ≥ 3, c ≥ 0 and G be an n-connected graph. Suppose that for every independent set ${S \subseteq V(G)}In this paper, we give a sufficient condition for a graph to have a degree bounded spanning tree. Let n ≥ 1, k ≥ 3, c ≥ 0 and G be an n-connected graph. Suppose that for every independent set S í V(G){S \subseteq V(G)} of cardinality n(k−1) + c + 2, there exists a vertex set X í S{X \subseteq S} of cardinality k such that the degree sum of vertices in X is at least |V(G)| − c −1. Then G has a spanning tree T with maximum degree at most kc/nù{k+\lceil c/n\rceil} and ?v ? V(T)max{dT(v)-k,0} £ c{\sum_{v\in V(T)}\max\{d_T(v)-k,0\}\leq c} .  相似文献   

19.
A graph is (m, k)-colorable if its vertices can be colored with m colors in such a way that each vertex is adjacent to at most k vertices of the same color as itself. In a recent paper Cowen, Cowen, and Woodall proved that, for each compact surface S, there exists an integer k = k(S) such that every graph in S can be (4, k)-colored. They also conjectured that the 4 could be replaced by 3. In this note we prove their conjecture.  相似文献   

20.
In a connected graph define the k-center as the set of vertices whose distance from any other vertex is at most k. We say that a vertex set S d-dominates G if for every vertex x there is a y ∈ S whose distance from x is at most d. Call a graph Pt-free if it does not contain a path on t vertices as an induced subgraph. We prove that a connected graph is P2k-1-free (P2k-free) if and only if each of its connected induced subgraphs H satisfy the following property: The k-center of H (k - 1)-dominates ((k - 2)-dominates) H. Moreover, we show that the subgraph induced by the (t - 3)-center in any Pt-free connected graph is again connected and has diameter at most t - 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号