首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let M be an associated matrix of a graph G (the adjacency, Laplacian and signless Laplacian matrix). Two graphs are said to be cospectral with respect to M if they have the same M spectrum. A graph is said to be determined by M spectrum if there is no other non-isomorphic graph with the same spectrum with respect to M. It is shown that T-shape trees are determined by their Laplacian spectra. Moreover among them those are determined by their adjacency spectra are characterized. In this paper, we identify graphs which are cospectral to a given T-shape tree with respect to the signless Laplacian matrix. Subsequently, T-shape trees which are determined by their signless Laplacian spectra are identified.  相似文献   

2.
A graph is said to be determined by the adjacency and Laplacian spectrum (or to be a DS graph, for short) if there is no other non-isomorphic graph with the same adjacency and Laplacian spectrum, respectively. It is known that connected graphs of index less than 2 are determined by their adjacency spectrum. In this paper, we focus on the problem of characterization of DS graphs of index less than 2. First, we give various infinite families of cospectral graphs with respect to the adjacency matrix. Subsequently, the results will be used to characterize all DS graphs (with respect to the adjacency matrix) of index less than 2 with no path as a component. Moreover, we show that most of these graphs are DS with respect to the Laplacian matrix.  相似文献   

3.
The signless Laplacian matrix of a graph G is defined to be the sum of its adjacency matrix and degree diagonal matrix, and its eigenvalues are called Q-eigenvalues of G. A Q-eigenvalue of a graph G is called a Q-main eigenvalue if it has an eigenvector the sum of whose entries is not equal to zero. In this work, all trees, unicyclic graphs and bicyclic graphs with exactly two Q-main eigenvalues are determined.  相似文献   

4.
Let G be a finite simple graph with adjacency matrix A, and let P(A) be the convex closure of the set of all permutation matrices commuting with A. G is said to be compact if every doubly stochastic matrix which commutes with A is in P(A). In this paper, we characterize 3-regular compact graphs and prove that if G is a connected regular compact graph, G - v is also compact, and give a family of almost regular compact connected graphs.  相似文献   

5.
Stevanović  Dragan 《Order》2022,39(1):77-94

The k-th spectral moment Mk(G) of the adjacency matrix of a graph G represents the number of closed walks of length k in G. We study here the partial order ? of graphs, defined by G ? H if Mk(G) ≤ Mk(H) for all k ≥?0, and are interested in the question when is ? a linear order within a specified set of graphs? Our main result is that ? is a linear order on each set of starlike trees with constant number of vertices. Recall that a connected graph G is a starlike tree if it has a vertex u such that the components of G ? u are paths, called the branches of G. It turns out that the ? ordering of starlike trees with constant number of vertices coincides with the shortlex order of sorted sequence of their branch lengths.

  相似文献   

6.
Haicheng Ma 《Discrete Mathematics》2010,310(24):3648-3652
A graph is said to be determined by its adjacency spectrum (DS for short) if there is no other non-isomorphic graph with the same spectrum. In this paper, we focus our attention on the spectral characterization of the union of complete multipartite graph and some isolated vertices, and all its cospectral graphs are obtained. By the results, some complete multipartite graphs determined by their adjacency spectrum are also given. This extends several previous results of spectral characterization related to the complete multipartite graphs.  相似文献   

7.
8.
An edge-deleted subgraph of a graph G is a subgraph obtained from G by the deletion of an edge. The Edge Reconstruction Conjecture asserts that every simple finite graph with four or more edges is determined uniquely, up to isomorphism, by its collection of edge-deleted subgraphs. A class of graphs is said to be edge reconstructible if there is no graph in the class with four or more edges that is not edge reconstructible. This paper proves that bidegreed graphs (graphs whose vertices all have one of two possible degrees) are edge reconstructible. The results are then generalized to show that all graphs that do not have three consecutive integers in their degree sequence are also edge reconstructible.  相似文献   

9.
The spectral spread of a graph is defined to be the difference between the largest and the least eigenvalue of the adjacency matrix of the graph. A graph G is said to be bicyclic, if G is connected and |E(G)| = |V(G)|+ 1. Let B(n, g) be the set of bicyclic graphs on n vertices with girth g. In this paper some properties about the least eigenvalues of graphs are given, by which the unique graph with maximal spectral spread in B(n, g) is determined.  相似文献   

10.
For a (simple) graph G, the signless Laplacian of G is the matrix A(G)+D(G), where A(G) is the adjacency matrix and D(G) is the diagonal matrix of vertex degrees of G; the reduced signless Laplacian of G is the matrix Δ(G)+B(G), where B(G) is the reduced adjacency matrix of G and Δ(G) is the diagonal matrix whose diagonal entries are the common degrees for vertices belonging to the same neighborhood equivalence class of G. A graph is said to be (degree) maximal if it is connected and its degree sequence is not majorized by the degree sequence of any other connected graph. For a maximal graph, we obtain a formula for the characteristic polynomial of its reduced signless Laplacian and use the formula to derive a localization result for its reduced signless Laplacian eigenvalues, and to compare the signless Laplacian spectral radii of two well-known maximal graphs. We also obtain a necessary condition for a maximal graph to have maximal signless Laplacian spectral radius among all connected graphs with given numbers of vertices and edges.  相似文献   

11.
A set S of edge‐disjoint hamilton cycles in a graph G is said to be maximal if the edges in the hamilton cycles in S induce a subgraph H of G such that G ? E(H) contains no hamilton cycles. In this context, the spectrum S(G) of a graph G is the set of integers m such that G contains a maximal set of m edge‐disjoint hamilton cycles. This spectrum has previously been determined for all complete graphs and for all complete bipartite graphs. In this paper, we extend these results to the complete multipartite graphs. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 49–66, 2003  相似文献   

12.
A 2-edge-covering between G and H is an onto homomorphism from the vertices of G to the vertices of H so that each edge is covered twice and edges in H can be lifted back to edges in G. In this note we show how to compute the spectrum of G by computing the spectrum of two smaller graphs, namely a (modified) form of the covered graph H and another graph which we term the anti-cover. This is done for both the adjacency matrix and the normalized Laplacian. We also give an example of two anti-cover graphs which have the same normalized Laplacian, and state a generalization for directed graphs.  相似文献   

13.
A graph G is inexhaustible if whenever a vertex of G is deleted the remaining graph is isomorphic to G. We address a question of Cameron [6], who asked which countable graphs are inexhaustible. In particular, we prove that there are continuum many countable inexhaustible graphs with properties in common with the infinite random graph, including adjacency properties and universality. Locally finite inexhaustible graphs and forests are investigated, as is a semigroup structure on the class of inexhaustible graphs. We extend a result of [7] on homogeneous inexhaustible graphs to pseudo-homogeneous inexhaustible graphs.The authors gratefully acknowledge support from the Natural Science and Engineering Research Council of Canada (NSERC).  相似文献   

14.
Let G be the automorphism group of a graph Γ and let λ be an eigenvalue of the adjacency matrix of Γ. In this article, (i) we derive an upper bound for rank(G), (ii) if G is vertex transitive, we derive an upper bound for the extension degree of ?(λ) over ?, (iii) we study automorphism groups of graphs without multiple eigenvalues, (iv) we study spectra of quotient graphs associated with orbit partitions.  相似文献   

15.
The nullity η(G) of a graph G is the multiplicity of zero as an eigenvalue of the adjacency matrix of G. If η(G)?=?1, then the core of G is the subgraph induced by the vertices associated with the nonzero entries of the kernel eigenvector. The set of vertices which are not in the core is the periphery of G. A graph G with nullity one is minimal configuration if no two vertices in the periphery are adjacent and deletion of any vertex in the periphery increases the nullity. An ∞-graph ∞(p,?l,?q) is a graph obtained by joining two vertex-disjoint cycles C p and C q by a path of length l?≥?0. Let ?* be the class of bicyclic graphs with an ∞-graph as an induced subgraph. In this article, we characterize the graphs in ?* which are minimal configurations.  相似文献   

16.
A graph G is said to be retarded regular if there is a positive integral number s such that the number of walks of length s starting at vertices of G is a constant function. Regular and semiregular graphs are retarded regular with s?=?1 and s\!≤ \!2, respectively. We prove that any retarded regular connected graph is either regular or semiregular.  相似文献   

17.
A connected graph is said to be unoriented Laplacian maximizing if the spectral radius of its unoriented Laplacian matrix attains the maximum among all connected graphs with the same number of vertices and the same number of edges. A graph is said to be threshold (maximal) if its degree sequence is not majorized by the degree sequence of any other graph (and, in addition, the graph is connected). It is proved that an unoriented Laplacian maximizing graph is maximal and also that there are precisely two unoriented Laplacian maximizing graphs of a given order and with nullity 3. Our treatment depends on the following known characterization: a graph G is threshold (maximal) if and only if for every pair of vertices u,v of G, the sets N(u)?{v},N(v)?{u}, where N(u) denotes the neighbor set of u in G, are comparable with respect to the inclusion relation (and, in addition, the graph is connected). A conjecture about graphs that maximize the unoriented Laplacian matrix among all graphs with the same number of vertices and the same number of edges is also posed.  相似文献   

18.
Chain graphs are exactly bipartite graphs without induced 2K 2 (a graph with four vertices and two disjoint edges). A graph G=(V,E) with a given independent set SV (a set of pairwise non-adjacent vertices) is said to be a chain partitioned probe graph if G can be extended to a chain graph by adding edges between certain vertices in S. In this note we give two characterizations for chain partitioned probe graphs. The first one describes chain partitioned probe graphs by six forbidden subgraphs. The second one characterizes these graphs via a certain “enhanced graph”: G is a chain partitioned probe graph if and only if the enhanced graph G * is a chain graph. This is analogous to a result on interval (respectively, chordal, threshold, trivially perfect) partitioned probe graphs, and gives an O(m 2)-time recognition algorithm for chain partitioned probe graphs.  相似文献   

19.
If A is the adjacency matrix of a graph G, then Ai is the adjacency matrix of the graph on the same vertex set in which a pair of vertices is adjacent if and only if their distance apart is i in G. If G is distance-regular, then Ai is a polynomial of degree i in A. It is shown that the converse is also true. If Ai is a polynomial in A, not necessarily of degree i, G is said to be distance-polynomial. It is shown that this is a larger class of graphs and some of its properties are investigated.  相似文献   

20.
For a graph G, we define its perturbed Laplacian matrix as D?A(G) where A(G) is the adjacency matrix of G and D is an arbitrary diagonal matrix. Both the Laplacian matrix and the negative of the adjacency matrix are special instances of the perturbed Laplacian. Several well-known results, contained in the classical work of Fiedler and in more recent contributions of other authors are shown to be true, with suitable modifications, for the perturbed Laplacian. An appropriate generalization of the monotonicity property of a Fiedler vector for a tree is obtained. Some of the results are applied to interval graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号