首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 674 毫秒
1.
We define a perfect matching in a k-uniform hypergraph H on n vertices as a set of ⌊n/k⌋ disjoint edges. Let δk−1(H) be the largest integer d such that every (k−1)-element set of vertices of H belongs to at least d edges of H.In this paper we study the relation between δk−1(H) and the presence of a perfect matching in H for k?3. Let t(k,n) be the smallest integer t such that every k-uniform hypergraph on n vertices and with δk−1(H)?t contains a perfect matching.For large n divisible by k, we completely determine the values of t(k,n), which turn out to be very close to n/2−k. For example, if k is odd and n is large and even, then t(k,n)=n/2−k+2. In contrast, for n not divisible by k, we show that t(k,n)∼n/k.In the proofs we employ a newly developed “absorbing” technique, which has a potential to be applicable in a more general context of establishing existence of spanning subgraphs of graphs and hypergraphs.  相似文献   

2.
A hamiltonian path (cycle) in an n-vertex 3-uniform hypergraph is a (cyclic) ordering of the vertices in which every three consecutive vertices form an edge. For large n, we prove an analog of the celebrated Dirac theorem for graphs: there exists n0 such that every n-vertex 3-uniform hypergraph H, n?n0, in which each pair of vertices belongs to at least n/2−1 (⌊n/2⌋) edges, contains a hamiltonian path (cycle, respectively). Both results are easily seen to be optimal.  相似文献   

3.
Total domination of graphs and small transversals of hypergraphs   总被引:3,自引:0,他引:3  
The main result of this paper is that every 4-uniform hypergraph on n vertices and m edges has a transversal with no more than (5n + 4m)/21 vertices. In the particular case n = m, the transversal has at most 3n/7 vertices, and this bound is sharp in the complement of the Fano plane. Chvátal and McDiarmid [5] proved that every 3-uniform hypergraph with n vertices and edges has a transversal of size n/2. Two direct corollaries of these results are that every graph with minimal degree at least 3 has total domination number at most n/2 and every graph with minimal degree at least 4 has total domination number at most 3n/7. These two bounds are sharp.  相似文献   

4.
T be a simple k-uniform hypertree with t edges. It is shown that if H is any k-uniform hypergraph with n vertices and with minimum degree at least , and the number of edges of H is a multiple of t then H has a T-decomposition. This result is asymptotically best possible for all simple hypertrees with at least two edges. Received December 28, 1998  相似文献   

5.
A k-uniform hypergraph is hamiltonian if for some cyclic ordering of its vertex set, every k consecutive vertices form an edge. In 1952 Dirac proved that if the minimum degree in an n-vertex graph is at least n/2 then the graph is hamiltonian. We prove an approximate version of an analogous result for uniform hypergraphs: For every K ≥ 3 and γ > 0, and for all n large enough, a sufficient condition for an n-vertex k-uniform hypergraph to be hamiltonian is that each (k − 1)-element set of vertices is contained in at least (1/2 + γ)n edges. Research supported by NSF grant DMS-0300529. Research supported by KBN grant 2P03A 015 23 and N201036 32/2546. Part of research performed at Emory University, Atlanta. Research supported by NSF grant DMS-0100784.  相似文献   

6.
Edge colorings of r-uniform hypergraphs naturally define a multicoloring on the 2-shadow, i.e., on the pairs that are covered by hyperedges. We show that in any (r – 1)-coloring of the edges of an r-uniform hypergraph with n vertices and at least (1-e)( *20c nr)(1-\varepsilon)\left( {\begin{array}{*{20}c} n\\ r\\ \end{array}}\right) edges, the 2-shadow has a monochromatic matching covering all but at most o(n) vertices. This result confirms an earlier conjecture and implies that for any fixed r and sufficiently large n, there is a monochromatic Berge-cycle of length (1 – o(1))n in every (r – 1)-coloring of the edges of K(r)n{K^{(r)}_{n}}, the complete r-uniform hypergraph on n vertices.  相似文献   

7.
We say that a k-uniform hypergraph C is an ?-cycle if there exists a cyclic ordering of the vertices of C such that every edge of C consists of k consecutive vertices and such that every pair of consecutive edges (in the natural ordering of the edges) intersects in precisely ? vertices. We prove that if 1??<k and k? does not divide k then any k-uniform hypergraph on n vertices with minimum degree at least contains a Hamilton ?-cycle. This confirms a conjecture of Hàn and Schacht. Together with results of Rödl, Ruciński and Szemerédi, our result asymptotically determines the minimum degree which forces an ?-cycle for any ? with 1??<k.  相似文献   

8.
This paper deals with an extremal problem concerning hypergraph colorings. Let k be an integer. The problem is to find the value m k (n) equal to the minimum number of edges in an n-uniform hypergraph not admitting two-colorings of the vertex set such that every edge of the hypergraph contains k vertices of each color. In this paper, we obtain the exact values of m 2(5) and m 2(4), and the upper bounds for m 3(7) and m 4(9).  相似文献   

9.
In this note, we determine the maximum number of edges of a k-uniform hypergraph, k≥3, with a unique perfect matching. This settles a conjecture proposed by Snevily.  相似文献   

10.
Let α(H) be the stability number of a hypergraph H = (X, E). T(n, k, α) is the smallest q such that there exists a k-uniform hypergraph H with n vertices, q edges and with α(H) ? α. A k-uniform hypergraph H, with n vertices, T(n, k, α) edges and α(H) ?α is a Turan hypergraph. The value of T(n, 2, α) is given by a theorem of Turan. In this paper new lower bounds to T(n, k, α) are obtained and it is proved that an infinity of affine spaces are Turan hypergraphs.  相似文献   

11.
The transversal number of a given hypergraph is the cardinality of the smallest set of vertices meeting all the edges. What is the maximal possible value of the transversal number of a r-uniform hypergraph on n vertices with maximal degree p? The problem is solved here for p = 2, by using Berge's theorem on matchings.  相似文献   

12.
We study the minimum number of complete r-partite r-uniform hypergraphs needed to partition the edges of the complete r-uniform hypergraph on n vertices and we improve previous results of Alon.  相似文献   

13.
We prove that any k-uniform hypergraph on n vertices with minimum degree at least contains a loose Hamilton cycle. The proof strategy is similar to that used by Kühn and Osthus for the 3-uniform case. Though some additional difficulties arise in the k-uniform case, our argument here is considerably simplified by applying the recent hypergraph blow-up lemma of Keevash.  相似文献   

14.
A k-uniform hypergraph with vertex set V and edge set E is called t-subset-regular if every t-element subset of V lies in the same number of elements of E. In this paper we show that a 1-subset-regular self-complementary 3-uniform hypergraph with n vertices exists if and only if n≥5 and n is congruent to 1 or 2 modulo 4.  相似文献   

15.
A graph is k-linked if for every set of 2k distinct vertices {s1,…,sk,t1,…,tk} there exist disjoint paths P1,…,Pk such that the endpoints of Pi are si and ti. We prove every 6-connected graph on n vertices with 5n−14 edges is 3-linked. This is optimal, in that there exist 6-connected graphs on n vertices with 5n−15 edges that are not 3-linked for arbitrarily large values of n.  相似文献   

16.
A supertree is a connected and acyclic hypergraph. For a hypergraph H, the maximal modulus of the eigenvalues of its adjacency tensor is called the spectral radius of H. By applying the operation of moving edges on hypergraphs and the weighted incidence matrix method, we determine the ninth and the tenth k-uniform supertrees with the largest spectral radii among all k-uniform supertrees on n vertices, which extends the known result.  相似文献   

17.
A (hyper)graph G is called k-critical if it has chromatic number k, but every proper sub(hyper)graph of it is (k-1)-colourable. We prove that for sufficiently large k, every k-critical triangle-free graph on n vertices has at least (k-o(k))n edges. Furthermore, we show that every (k+1)-critical hypergraph on n vertices and without graph edges has at least (k-3/3?{k}) n(k-3/\sqrt[3]{k}) n edges. Both bounds differ from the best possible bounds by o(kn) even for graphs or hypergraphs of arbitrary girth.  相似文献   

18.
Let n, k, and t be integers satisfying . A Steiner system with parameters t, k, and n is a k‐uniform hypergraph on n vertices in which every set of t distinct vertices is contained in exactly one edge. An outstanding problem in Design Theory is to determine whether a nontrivial Steiner system exists for . In this note we prove that for every and sufficiently large n, there exists an almost Steiner system with parameters t, k, and n; that is, there exists a k‐uniform hypergraph on n vertices such that every set of t distinct vertices is covered by either one or two edges.  相似文献   

19.
We show that for every ? > 0 there exist δ > 0 and n0 ∈ ? such that every 3-uniform hypergraph on nn0 vertices with the property that every k-vertex subset, where kδn, induces at least \(\left( {\frac{1}{2} + \varepsilon } \right)\left( {\begin{array}{*{20}c} k \\ 3 \\ \end{array} } \right)\) edges, contains K4? as a subgraph, where K4? is the 3-uniform hypergraph on 4 vertices with 3 edges. This question was originally raised by Erd?s and Sós. The constant 1/4 is the best possible.  相似文献   

20.
A special case of a conjecture of Ryser states that if a 3-partite 3-uniform hypergraph has at mostv pairwise disjoint edges then there is a set of vertices of cardinality at most 2v meeting all edges of the hypergraph. The best known upper bound for the size of such a set is (8/3)v, given by Tuza [7]. In this note we improve this to (5/2)v.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号