首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Carleman estimates for one-dimensional degenerate heat equations   总被引:1,自引:0,他引:1  
In this paper, we are interested in controllability properties of parabolic equations degenerating at the boundary of the space domain. We derive new Carleman estimates for the degenerate parabolic equation $$ w_t + \left( {a\left( x \right)w_x } \right)_x = f,\quad \left( {t,x} \right) \in \left( {0,T} \right) \times \left( {0,1} \right), $$ where the function a mainly satisfies $$ a \in \mathcal{C}^0 \left( {\left[ {0,1} \right]} \right) \cap \mathcal{C}^1 \left( {\left( {0,1} \right)} \right),a \gt 0 \hbox{on }\left( {0,1} \right) \hbox{and }\frac{1} {{\sqrt a }} \in L^1 \left( {0,1} \right). $$ We are mainly interested in the situation of a degenerate equation at the boundary i.e. in the case where a(0)=0 and / or a(1)=0. A typical example is a(x)=xα (1 − x)β with α, β ∈ [0, 2). As a consequence, we deduce null controllability results for the degenerate one dimensional heat equation $$ u_t - (a(x)u_x )_x = h\chi _w ,\quad (t,x) \in (0,T) \times (0,1),\quad \omega \subset \subset (0,1). $$ The present paper completes and improves previous works [7, 8] where this problem was solved in the case a(x)=xα with α ∈[0, 2). Dedicated to Giuseppe Da Prato on the occasion of his 70th birthday  相似文献   

2.
In this paper, we consider the semilinear parabolic equation $u_t-\Delta u=u^q\int^{t}_{0}u^p(x,s)ds,\ \ \ x \in \Omega,\ \ t>0$u_t-\Delta u=u^q\int^{t}_{0}u^p(x,s)ds,\ \ \ x \in \Omega,\ \ t>0 with homogeneous Dirichlet boundary conditions, where p, q are nonnegative constants. The blowup criteria and the blowup rate are obtained.  相似文献   

3.
We consider semilinear partial differential equations in ℝ n of the form
$ \sum\limits_{\frac{{|\alpha |}} {m} + \frac{{|\beta |}} {k} \leqslant 1} {c_{\alpha \beta } x^\beta D_x^\alpha u = F(u)} , $ \sum\limits_{\frac{{|\alpha |}} {m} + \frac{{|\beta |}} {k} \leqslant 1} {c_{\alpha \beta } x^\beta D_x^\alpha u = F(u)} ,   相似文献   

4.
It is shown that the solutions of a nonlinear stationary problem for the Navier-Stokes equations in a bounded domain Ω ? ?3 with boundary conditions $\vec \upsilon \left| {_{\partial \Omega } } \right. = \vec a(x)$ satisfy the inequality $\left. {_{x \in \Omega }^{\sup } } \right|\left. {\vec v(x)} \right| \leqslant c\left( {\left. {_{x \in \partial \Omega }^{\sup } } \right|\left. {\vec a(x)} \right|} \right)$ for arbitrary Reynolds numbers. Bibliography: 9 titles.  相似文献   

5.
We study the compressible Navier-Stokes equations of viscous heat-conductive fluids in a periodic domain \mathbbT3\mathbb{T}^{3} with zero heat conductivity k=0. We prove a blow-up criterion for the local strong solutions in terms of the temperature and positive density, similar to the Beale-Kato-Majda criterion for ideal incompressible flows.  相似文献   

6.
In this paper we obtain a new regularity criterion for weak solutions to the 3D MHD equations. It is proved that if div( \fracu|u|) \mathrm{div}( \frac{u}{|u|}) belongs to L\frac21-r( 0,T;[(X)\dot]r( \mathbbR3) ) L^{\frac{2}{1-r}}( 0,T;\dot{X}_{r}( \mathbb{R}^{3}) ) with 0≤r≤1, then the weak solution actually is regular and unique.  相似文献   

7.
We extend previous results for the Neumann boundary value problem to the case of boundary data from the space $H^{-\frac{1}{2}+\varepsilon}(\Gamma), 0{<}{\varepsilon}{<}\frac{1}{2}We extend previous results for the Neumann boundary value problem to the case of boundary data from the space $H^{-\frac{1}{2}+\varepsilon}(\Gamma), 0{<}{\varepsilon}{<}\frac{1}{2}$, where Γ=?Ω is the boundary of a two‐dimensional cone Ω with angle β<π. We prove that for these boundary conditions the solution of the Helmholtz equation in Ω exists in the Sobolev space H1+ε(Ω), is unique and depends continuously on the boundary data. Moreover, we give the Sommerfeld representation for these solutions. This can be used to formulate explicit compatibility conditions on the data for regularity properties of the corresponding solution. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
We prove an estimate of Carleman type for the one dimensional heat equation $$ u_t - \left( {a\left( x \right)u_x } \right)_x + c\left( {t,x} \right)u = h\left( {t,x} \right),\quad \left( {t,x} \right) \in \left( {0,T} \right) \times \left( {0,1} \right), $$ where a(·) is degenerate at 0. Such an estimate is derived for a special pseudo-convex weight function related to the degeneracy rate of a(·). Then, we study the null controllability on [0, 1] of the semilinear degenerate parabolic equation $$ u_t - \left( {a\left( x \right)u_x } \right)_x + f\left( {t,x,u} \right) = h\left( {t,x} \right)\chi _\omega \left( x \right), $$ where (t, x) ∈(0, T) × (0, 1), ω=(α, β) ⊂⊂ [0, 1], and f is locally Lipschitz with respect to u. Dedicated to Giuseppe Da Prato on the occasion of his 70th birthday  相似文献   

9.
There are lots of results on the solutions of the heat equation \frac?u?t = \mathop?ni=1\frac?2?x2iu,\frac{\partial u}{\partial t} = {\mathop\sum\limits^{n}_{i=1}}\frac{\partial^2}{\partial x^{2}_{i}}u, but much less on those of the Hermite heat equation \frac?U?t = \mathop?ni=1(\frac?2?x2i - x2i) U\frac{\partial U}{\partial t} = {\mathop\sum\limits^{n}_{i=1}}\left(\frac{\partial^2}{\partial x^{2}_{i}} - x^{2}_{i}\right) U due to that its coefficients are not constant and even not bounded. In this paper, we find an explicit relation between the solutions of these two equations, thus all known results on the heat equation can be transferred to results on the Hermite heat equation, which should be a completely new idea to study the Hermite equation. Some examples are given to show that known results on the Hermite equation are obtained easily by this method, even improved. There is also a new uniqueness theorem with a very general condition for the Hermite equation, which answers a question in a paper in Proc. Japan Acad. (2005).  相似文献   

10.
We study the first vanishing time for solutions of the Cauchy–Dirichlet problem for the 2m-order (m ≥ 1) semilinear parabolic equation ${u_t + Lu + a(x) |u|^{q-1}u=0,\,0 < q < 1}We study the first vanishing time for solutions of the Cauchy–Dirichlet problem for the 2m-order (m ≥ 1) semilinear parabolic equation ut + Lu + a(x) |u|q-1u=0, 0 < q < 1{u_t + Lu + a(x) |u|^{q-1}u=0,\,0 < q < 1} with a(x) ≥ 0 bounded in the bounded domain W ì \mathbb RN{\Omega \subset \mathbb R^N}. We prove that if N 1 2m{N \ne 2m} and ò01 s-1 (meas\nolimits {x ? W: |a(x)| £ s })q ds < ¥, q = min(\frac2mN,1){\int_0^1 s^{-1} (\mathop{\rm meas}\nolimits \{x \in \Omega : |a(x)| \leq s \})^\theta {\rm d}s < \infty,\ \theta=\min\left(\frac{2m}N,1\right)}, then the solution u vanishes in a finite time. When N = 2m, the same property holds if ${\int_0^1 s^{-1} \left( \mathop{\rm meas}\nolimits \{x \in \Omega : |a(x)| \leq s \} \right) \ln \left( \mathop{\rm meas}\nolimits \{x \in \Omega : |a(x)| \leq s \} \right) {\rm d}s > - \infty}${\int_0^1 s^{-1} \left( \mathop{\rm meas}\nolimits \{x \in \Omega : |a(x)| \leq s \} \right) \ln \left( \mathop{\rm meas}\nolimits \{x \in \Omega : |a(x)| \leq s \} \right) {\rm d}s > - \infty}.  相似文献   

11.
The purpose of this paper is to estimate the rate of convergence for some natural difference analogues of Dirichlet's problem for uniformly elliptic differential equations, $$\begin{gathered} \sum\limits_{j,k = 1}^N {\frac{\partial }{{\partial x_j }}} \left( {a_{jk} \frac{{\partial u}}{{\partial x_k }}} \right) = F in R, \hfill \\ u = f on B, \hfill \\ \end{gathered}$$ in aN-dimensional domainR with boundaryB. These schemes will in general not be of positive type, and the analysis will therefore be carried out in discreteL 2-norms rather than in the maximum norm. Since our approximation of the boundary condition is rather crude, we will only arrive at a rate of convergence of first order for smoothF andf. Special emphasis will be put on appraising the dependence of the rate of convergence on the regularity ofF andf.  相似文献   

12.
Consider the following recursively defined sequence: $\tau _1 = 1,\sum\limits_{j = 1}^n {\frac{1} {{\sum\nolimits_{s = j}^n {\tau _s } }}} = 1forn \geqslant 2, $ , which originates from a heat conduction problem first studied by Myshkis (1997). Chang, Chow, and Wang (2003) proved that $\tau _n = \log n + O(1) for large n.$ . In this note, we refine this result to $\tau _n = \log n + \gamma + O\left( {\frac{1} {{\log n}}} \right). $ . where γ is the Euler constant.  相似文献   

13.
We consider the space A(\mathbbT)A(\mathbb{T}) of all continuous functions f on the circle \mathbbT\mathbb{T} such that the sequence of Fourier coefficients [^(f)] = { [^(f)]( k ), k ? \mathbbZ }\hat f = \left\{ {\hat f\left( k \right), k \in \mathbb{Z}} \right\} belongs to l 1(ℤ). The norm on A(\mathbbT)A(\mathbb{T}) is defined by || f ||A(\mathbbT) = || [^(f)] ||l1 (\mathbbZ)\left\| f \right\|_{A(\mathbb{T})} = \left\| {\hat f} \right\|_{l^1 (\mathbb{Z})}. According to the well-known Beurling-Helson theorem, if f:\mathbbT ? \mathbbT\phi :\mathbb{T} \to \mathbb{T} is a continuous mapping such that || einf ||A(\mathbbT) = O(1)\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = O(1), n ∈ ℤ then φ is linear. It was conjectured by Kahane that the same conclusion about φ is true under the assumption that || einf ||A(\mathbbT) = o( log| n | )\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\log \left| n \right|} \right). We show that if $\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\left( {{{\log \log \left| n \right|} \mathord{\left/ {\vphantom {{\log \log \left| n \right|} {\log \log \log \left| n \right|}}} \right. \kern-\nulldelimiterspace} {\log \log \log \left| n \right|}}} \right)^{1/12} } \right)$\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\left( {{{\log \log \left| n \right|} \mathord{\left/ {\vphantom {{\log \log \left| n \right|} {\log \log \log \left| n \right|}}} \right. \kern-\nulldelimiterspace} {\log \log \log \left| n \right|}}} \right)^{1/12} } \right), then φ is linear.  相似文献   

14.
Many problems in mathematical physics are reduced to one- or multidimensional initial and initial-boundary value problems for, generally speaking, strongly nonlinear Sobolev-type equations. In this work, local and global classical solvability is studied for the one-dimensional mixed problem with homogeneous Riquier-type boundary conditions for a class of semilinear long-wave equations
$ U_{tt} \left( {t,x} \right) - U_{xx} \left( {t,x} \right) - \alpha U_{ttxx} \left( {t,x} \right) = F\left( {t,x,U\left( {t,x} \right),U_x \left( {t,x} \right),U_{xx} \left( {t,x} \right),U_t \left( {t,x} \right),U_{tx} \left( {t,x} \right),U_{txx} \left( {t,x} \right)} \right) $ U_{tt} \left( {t,x} \right) - U_{xx} \left( {t,x} \right) - \alpha U_{ttxx} \left( {t,x} \right) = F\left( {t,x,U\left( {t,x} \right),U_x \left( {t,x} \right),U_{xx} \left( {t,x} \right),U_t \left( {t,x} \right),U_{tx} \left( {t,x} \right),U_{txx} \left( {t,x} \right)} \right)   相似文献   

15.
Considering the positive d-dimensional lattice point Z + d (d ≥ 2) with partial ordering ≤, let {X k: kZ + d } be i.i.d. random variables taking values in a real separable Hilbert space (H, ‖ · ‖) with mean zero and covariance operator Σ, and set $ S_n = \sum\limits_{k \leqslant n} {X_k } $ S_n = \sum\limits_{k \leqslant n} {X_k } , nZ + d . Let σ i 2, i ≥ 1, be the eigenvalues of Σ arranged in the non-increasing order and taking into account the multiplicities. Let l be the dimension of the corresponding eigenspace, and denote the largest eigenvalue of Σ by σ 2. Let logx = ln(xe), x ≥ 0. This paper studies the convergence rates for $ \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}} P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt {2\left| n \right|\log \log \left| n \right|} } \right) $ \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}} P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt {2\left| n \right|\log \log \left| n \right|} } \right) . We show that when l ≥ 2 and b > −l/2, E[‖X2(log ‖X‖) d−2(log log ‖X‖) b+4] < ∞ implies $ \begin{gathered} \mathop {\lim }\limits_{\varepsilon \searrow \sqrt {d - 1} } (\varepsilon ^2 - d + 1)^{b + l/2} \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt 2 \left| n \right|\log \log \left| n \right|} \right)} \hfill \\ = \frac{{K(\Sigma )(d - 1)^{\frac{{l - 2}} {2}} \Gamma (b + l/2)}} {{\Gamma (l/2)(d - 1)!}} \hfill \\ \end{gathered} $ \begin{gathered} \mathop {\lim }\limits_{\varepsilon \searrow \sqrt {d - 1} } (\varepsilon ^2 - d + 1)^{b + l/2} \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt 2 \left| n \right|\log \log \left| n \right|} \right)} \hfill \\ = \frac{{K(\Sigma )(d - 1)^{\frac{{l - 2}} {2}} \Gamma (b + l/2)}} {{\Gamma (l/2)(d - 1)!}} \hfill \\ \end{gathered} , where Γ(·) is the Gamma function and $ \prod\limits_{i = l + 1}^\infty {((\sigma ^2 - \sigma _i^2 )/\sigma ^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } $ \prod\limits_{i = l + 1}^\infty {((\sigma ^2 - \sigma _i^2 )/\sigma ^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } .  相似文献   

16.
We consider the Cauchy problem for the nonlinear Schrödinger equations $ \begin{array}{l} iu_t + \triangle u \pm |u|^{p-1}u =0, \qquad x \in \mathbb{R}^d, \quad t \in \mathbb{R} \\ u(x,0)= u_0(x), \qquad x \in \mathbb{R}^d \end{array} $ for 1 < p < 1 + 4/d and prove that there is a ${\rho (p ,d) \in (1,2)}We consider the Cauchy problem for the nonlinear Schr?dinger equations
l iut + \triangle u ±|u|p-1u = 0,        x ? \mathbbRd,     t ? \mathbbR u(x,0) = u0(x),        x ? \mathbbRd \begin{array}{l} iu_t + \triangle u \pm |u|^{p-1}u =0, \qquad x \in \mathbb{R}^d, \quad t \in \mathbb{R} \\ u(x,0)= u_0(x), \qquad x \in \mathbb{R}^d \end{array}  相似文献   

17.
LetD be an open, bounded set in euclidean space m (m=2, 3, ...) with boundary D. SupposeD has temperature 0 at timet=0, while D is kept at temperature 1 for allt>0. We use brownian motion to obtain estimates for the solution of corresponding heat equation and to obtain results for the asymptotic behaviour ofE D (t), the amount of heat inD at timet, ast0+. For the triadic von Koch snowflakeK our results imply that
  相似文献   

18.
We develop the shape derivative analysis of solutions to the problem of scattering of time-harmonic electromagnetic waves by a penetrable bounded obstacle. Since boundary integral equations are a classical tool to solve electromagnetic scattering problems, we study the shape differentiability properties of the standard electromagnetic boundary integral operators. The latter are typically bounded on the space of tangential vector fields of mixed regularity T H-\frac12(divG,G){\mathsf T \mathsf H^{-\frac{1}{2}}({\rm div}_{\Gamma},\Gamma)}. Using Helmholtz decomposition, we can base their analysis on the study of pseudo-differential integral operators in standard Sobolev spaces, but we then have to study the Gateaux differentiability of surface differential operators. We prove that the electromagnetic boundary integral operators are infinitely differentiable without loss of regularity. We also give a characterization of the first shape derivative of the solution of the dielectric scattering problem as a solution of a new electromagnetic scattering problem.  相似文献   

19.
Let X, X1 , X2 , . . . be i.i.d. random variables, and set Sn = X1 +···+Xn , Mn = maxk≤n |Sk|, n ≥1. Let an = o( (n)(1/2)/logn). By using the strong approximation, we prove that, if EX = 0, VarX = σ2 0 and E|X| 2+ε ∞ for some ε 0, then for any r 1, lim ε1/(r-1)(1/2) [ε-2-(r-1)]∞∑n=1 nr-2 P{Mn ≤εσ (π2n/(8log n))(1/2) + an } = 4/π . We also show that the widest a n is o( n(1/2)/logn).  相似文献   

20.
Blow-up for semilinear parabolic equations with nonlinear memory   总被引:4,自引:0,他引:4  
In this paper, we consider the semilinear parabolic equation with homogeneous Dirichlet boundary conditions, where p, q are nonnegative constants. The blowup criteria and the blowup rate are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号