首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
We present numerical schemes for the P1‐moment and M1‐moment approximations of a non‐classical transport equation modeling radiative transfer in atmospheric clouds. In contrast to classical radiative transfer, the photon path‐length is introduced as an additional variable and serves as pseudo‐time in this model. Because clouds may have optically thick regions, we introduce a diffusive scaling and show that the diffusion limits of the moment models and the original equations agree. Furthermore, we show that the numerical schemes also preserve the diffusion asymptotics as well as the set of admissible and realizable states, both for the explicit and the implicit discretization of the pseudo‐time variable. A source iteration‐like method is proposed, and we observe that it converges slowly in the optical thick case, but a suitable initialization can help to overcome this problem. We validate our method in 1D and present simulation results in the 2D‐case for real cloud data. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
We study the evolution of convex hypersurfaces H(., t) with initial H(., 0) = 0H0 at a rate equal to H - f along its outer normal, where H is the inverse of harmonic mean curvature of H(., t), H0 is a smooth, closed, and uniformly convex hypersurface. We find a θ^* 〉 0 and a sufficient condition about the anisotropic function f, such that if θ 〉 θ^*, then H(.,t) remains uniformly convex and expands to infinity as t →∞ and its scaling, H(-, t)e^-nt, converges to a sphere. In addition, the convergence result is generalized to the fully nonlinear case in which the evolution rate is log H - log f instead of H - f.  相似文献   

3.
An asymptotic‐preserving (AP) scheme is efficient in solving multiscale problems where kinetic and hydrodynamic regimes coexist. In this article, we extend the BGK‐penalization‐based AP scheme, originally introduced by Filbet and Jin for the single species Boltzmann equation (Filbet and Jin, J Comput Phys 229 (2010) 7625–7648), to its multispecies counterpart. For the multispecies Boltzmann equation, the new difficulties arise due to: (1) the breaking down of the conservation laws for each species and (2) different convergence rates to equilibria for different species in disparate masses systems. To resolve these issues, we find a suitable penalty function—the local Maxwellian that is based on the mean velocity and mean temperature and justify various asymptotic properties of this method. This AP scheme does not contain any nonlinear nonlocal implicit solver, yet it can capture the fluid dynamic limit with time step and mesh size independent of the Knudsen number. Numerical examples demonstrate the correct asymptotic‐behavior of the scheme. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

4.
We devise a new class of asymptotic‐preserving Godunov‐type numerical schemes for hyperbolic systems with stiff and nonstiff relaxation source terms governed by a relaxation time ε. As an alternative to classical operator‐splitting techniques, the objectives of these schemes are twofold: first, to give accurate numerical solutions for large, small, and in‐between values of ε and second, to make optional the choice of the numerical scheme in the asymptotic regime ε tends to zero. The latter property may be of particular interest to make easier and more efficient the coupling at a fixed spatial interface of two models involving very different values of ε. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

5.
The multisymplectic schemes have been used in numerical simulations for the RLW‐type equation successfully. They well preserve the local geometric property, but not other local conservation laws. In this article, we propose three novel efficient local structure‐preserving schemes for the RLW‐type equation, which preserve the local energy exactly on any time‐space region and can produce richer information of the original problem. The schemes will be mass‐ and energy‐preserving as the equation is imposed on appropriate boundary conditions. Numerical experiments are presented to verify the efficiency and invariant‐preserving property of the schemes. Comparisons with the existing nonconservative schemes are made to show the behavior of the energy affects the behavior of the solution.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1678–1691, 2017  相似文献   

6.
We study the large time asymptotic behavior of solutions of the doubly degenerate parabolic equation u t = div(u m−1|Du| p−2 Du) − u q with an initial condition u(x, 0) = u 0(x). Here the exponents m, p and q satisfy m + p ⩾ 3, p > 1 and q > m + p − 2. The paper was supported by NSF of China (10571144), NSF for youth of Fujian province in China (2005J037) and NSF of Jimei University in China.  相似文献   

7.
In this paper, we study the initial-boundary value problem for a class of singular parabolic equations. Under some conditions, we obtain the existence and asymptotic behavior of solutions to the problem by parabolic regularization method and the sub-super solutions method. As a byproduct, we prove the existence of solutions to some problems with gradient terms, which blow up on the boundary.  相似文献   

8.
In this paper, we investigate a system of geometric evolution equations describing a curvature-driven motion of a family of planar curves with mutual interactions that can have local as well as nonlocal character, and the entire curve may influence evolution of other curves. We propose a direct Lagrangian approach for solving such a geometric flow of interacting curves. We prove local existence, uniqueness, and continuation of classical Hölder smooth solutions to the governing system of nonlinear parabolic equations. A numerical solution to the governing system has been constructed by means of the method of flowing finite volumes. We also discuss various applications of the motion of interacting curves arising in nonlocal geometric flows of curves as well as an interesting physical problem of motion of two interacting dislocation loops in the material science.  相似文献   

9.
We consider some initial–boundary value problems for non‐linear equations of thermoviscoelasticity in the three‐dimensional case. Since, we are interested to prove global existence we consider spherically symmetric problem. We examine the Neumann conditions for the temperature and either the Neumann or the Dirichlet boundary conditions for the elasticity equations. Using the energy method, we are able to obtain some energy estimates in appropriate Sobolev spaces enough to prove existence for all time without any restrictions on data. Due to the spherical symmetricity the constants in the above estimates increase with time so the existence for all finite times is proved only. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
We consider the nonlocal diffusion equation


on the space interval , with Dirichlet boundary conditions. It is known that if the curve remains in a compact subset of for all times, then blow-up cannot occur in infinite time. The aim of this paper is to show that the assumption on is sharp: for a large class of functions approaching the boundary as , blow-up in infinite time does occur for certain initial data. Moreover, the asymptotic behavior of the corresponding solution is precisely estimated and more general nonlinearities are also considered.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号