首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.

In this article, we present and analyze a stabilizer-free C0 weak Galerkin (SF-C0WG) method for solving the biharmonic problem. The SF-C0WG method is formulated in terms of cell unknowns which are C0 continuous piecewise polynomials of degree k + 2 with k ≽ 0 and in terms of face unknowns which are discontinuous piecewise polynomials of degree k + 1. The formulation of this SF-C0WG method is without the stabilized or penalty term and is as simple as the C1 conforming finite element scheme of the biharmonic problem. Optimal order error estimates in a discrete H2-like norm and the H1 norm for k ≽ 0 are established for the corresponding WG finite element solutions. Error estimates in the L2 norm are also derived with an optimal order of convergence for k > 0 and sub-optimal order of convergence for k = 0. Numerical experiments are shown to confirm the theoretical results.

  相似文献   

2.
In this paper,we provide a number of new estimates on the stability and convergence of both hybrid discontinuous Galerkin(HDG)and weak Galerkin(WG)methods.By using the standard Brezzi theory on mixed methods,we carefully define appropriate norms for the various discretization variables and then establish that the stability and error estimates hold uniformly with respect to stabilization and discretization parameters.As a result,by taking appropriate limit of the stabilization parameters,we show that the HDG method converges to a primal conforming method and the WG method converges to a mixed conforming method.  相似文献   

3.
Summary In this paper we consider a class of regularization methods for a discretized version of an operator equation (which includes the case that the problem is ill-posed) with approximately given right-hand side. We propose an a priori- as well as an a posteriori parameter choice method which is similar to the discrepancy principle of Ivanov-Morozov. From results on fractional powers of selfadjoint operators we obtain convergence rates, which are (in many cases) the same for both parameter choices.  相似文献   

4.

In this paper we consider convex feasibility problems where the feasible set is given as the intersection of a collection of closed convex sets. We assume that each set is specified algebraically as a convex inequality, where the associated convex function is general (possibly non-differentiable). For finding a point satisfying all the convex inequalities we design and analyze random projection algorithms using special subgradient iterations and extrapolated stepsizes. Moreover, the iterate updates are performed based on parallel random observations of several constraint components. For these minibatch stochastic subgradient-based projection methods we prove sublinear convergence results and, under some linear regularity condition for the functional constraints, we prove linear convergence rates. We also derive sufficient conditions under which these rates depend explicitly on the minibatch size. To the best of our knowledge, this work is the first deriving conditions that show theoretically when minibatch stochastic subgradient-based projection updates have a better complexity than their single-sample variants when parallel computing is used to implement the minibatch. Numerical results also show a better performance of our minibatch scheme over its non-minibatch counterpart.

  相似文献   

5.
关于共轭梯度法的下降性和收敛性   总被引:2,自引:0,他引:2  
本文给出了重新开始的一个准则,其准则是为保证共轭梯度法的下降性,我们不仅得到了具有不同参数选择的一般共轭梯度法的收敛性,而且将Ref.1中的结论给予推广。  相似文献   

6.

Recently, there has been a great interest in analysing dynamical flows, where the stationary limit is the minimiser of a convex energy. Particular flows of great interest have been continuous limits of Nesterov’s algorithm and the fast iterative shrinkage-thresholding algorithm, respectively. In this paper, we approach the solutions of linear ill-posed problems by dynamical flows. Because the squared norm of the residual of a linear operator equation is a convex functional, the theoretical results from convex analysis for energy minimising flows are applicable. However, in the restricted situation of this paper they can often be significantly improved. Moreover, since we show that the proposed flows for minimising the norm of the residual of a linear operator equation are optimal regularisation methods and that they provide optimal convergence rates for the regularised solutions, the given rates can be considered the benchmarks for further studies in convex analysis.

  相似文献   

7.
ABSTRACT

In this paper, we establish an initial theory regarding the second-order asymptotical regularization (SOAR) method for the stable approximate solution of ill-posed linear operator equations in Hilbert spaces, which are models for linear inverse problems with applications in the natural sciences, imaging and engineering. We show the regularizing properties of the new method, as well as the corresponding convergence rates. We prove that, under the appropriate source conditions and by using Morozov's conventional discrepancy principle, SOAR exhibits the same power-type convergence rate as the classical version of asymptotical regularization (Showalter's method). Moreover, we propose a new total energy discrepancy principle for choosing the terminating time of the dynamical solution from SOAR, which corresponds to the unique root of a monotonically non-increasing function and allows us to also show an order optimal convergence rate for SOAR. A damped symplectic iterative regularizing algorithm is developed for the realization of SOAR. Several numerical examples are given to show the accuracy and the acceleration effect of the proposed method. A comparison with other state-of-the-art methods are provided as well.  相似文献   

8.
It is well known that convergence rate of finite element approximation is suboptimal in the L2 norm for solving biharmonic equations when P2 or Q2 element is used. The goal of this paper is to derive a weak Galerkin (WG) P2 element with the L2 optimal convergence rate by assuming the exact solution sufficiently smooth. In addition, our new WG finite element method can be applied to general mesh such as hybrid mesh, polygonal mesh or mesh with hanging node. The numerical experiments have been conducted on different meshes including hybrid meshes with mixed of pentagon and rectangle and mixed of hexagon and triangle.  相似文献   

9.
In this paper, multigrid methods with residual scaling techniques for symmetric positive definite linear systems are considered. The idea of perturbed two-grid methods proposed in [7] is used to estimate the convergence factor of multigrid methods with residual scaled by positive constant scaling factors. We will show that if the convergence factors of the two-grid methods are uniformly bounded by σ (σ<0.5), then the convergence factors of the W-cycle multigrid methods are uniformly bounded by σ/(1−σ), whether the residuals are scaled at some or all levels. This result extends Notay’s Theorem 3.1 in [7] to more general cases. The result also confirms the viewpoint that the W-cycle multigrid method will converge sufficiently well as long as the convergence factor of the two-grid method is small enough. In the case where the convergence factor of the two-grid method is not small enough, by appropriate choice of the cycle index γ, we can guarantee that the convergence factor of the multigrid methods with residual scaling techniques still has a uniform bound less than σ/(1−σ). Numerical experiments are provided to show that the performance of multigrid methods can be improved by scaling the residual with a constant factor. The convergence rates of the two-grid methods and the multigrid methods show that the W-cycle multigrid methods perform better if the convergence rate of the two-grid method becomes smaller. These numerical experiments support the proposed theoretical results in this paper.  相似文献   

10.

A class of block boundary value methods (BBVMs) is constructed for linear weakly singular Volterra integro-differential equations (VIDEs). The convergence and stability of these methods is analysed. It is shown that optimal convergence rates can be obtained by using special graded meshes. Numerical examples are given to illustrate the sharpness of our theoretical results and the computational effectiveness of the methods. Moreover, a numerical comparison with piecewise polynomial collocation methods for VIDEs is given, which shows that the BBVMs are comparable in numerical precision.

  相似文献   

11.
Abstract

In this article we investigate the rate of convergence of the so-called two-armed bandit algorithm. The behavior of the algorithm turns out to be highly non standard: no central limit theorem, possible occurrence of two different rates of convergence with positive probability.  相似文献   

12.
In this paper, we study the convergence and the convergence rates of an inexact Newton–Landweber iteration method for solving nonlinear inverse problems in Banach spaces. Opposed to the traditional methods, we analyze an inexact Newton–Landweber iteration depending on the Hölder continuity of the inverse mapping when the data are not contaminated by noise. With the namely Hölder-type stability and the Lipschitz continuity of DF, we prove convergence and monotonicity of the residuals defined by the sequence induced by the iteration. Finally, we discuss the convergence rates.  相似文献   

13.
In this paper,we provide a finitely terminated yet efficient approach to compute the Euclidean projection onto the ordered weighted?1(OWL1)norm ball.In particular,an efficient semismooth Newton method is proposed for solving the dual of a reformulation of the original projection problem.Global and local quadratic convergence results,as well as the finite termination property,of the algorithm are proved.Numerical comparisons with the two best-known methods demonstrate the efficiency of our method.In addition,we derive the generalized Jacobian of the studied projector which,we believe,is crucial for the future designing of fast second-order nonsmooth methods for solving general OWL1 norm constrained problems.  相似文献   

14.
In this article, we analyze convergence and supercloseness properties of a class of weak Galerkin (WG) finite element methods for solving second‐order elliptic problems. It is shown that the WG solution is superclose to the Lagrange interpolant using Lobatto points. This supercloseness behavior is obtained through some newly designed stabilization terms. A postprocessing technique using polynomial preserving recovery (PPR) is introduced for the WG approximation. Superconvergence analysis is performed for the PPR recovered gradient. Numerical examples are provided to illustrate our theoretical results.  相似文献   

15.
《Optimization》2012,61(10):1701-1716
ABSTRACT

In this paper, a hybrid proximal algorithm with inertial effect is introduced to solve a split variational inclusion problem in real Hilbert spaces. Under mild conditions on the parameters, we establish weak convergence results for the proposed algorithm. Unlike the earlier iterative methods, we do not impose any conditions on the sequence generated by the proposed algorithm. Also, we extend our results to find a common solution of a split variational inclusion problem and a fixed-point problem. Finally, some numerical examples are given to discuss the convergence and superiority of the proposed iterative methods.  相似文献   

16.
Abstract

The idea of statistical relative convergence on modular spaces has been introduced by Orhan and Demirci. The notion of σ-statistical convergence was introduced by Mursaleen and Edely and further extended based on a fractional order difference operator by Kadak. The concern of this paper is to define two new summability methods for double sequences by combining the concepts of statistical relative convergence and σ-statistical convergence in modular spaces. Furthermore, we give some inclusion relations involving the newly proposed methods and present an illustrative example to show that our methods are nontrivial generalizations of the existing results in the literature. We also prove a Korovkin-type approximation theorem and estimate the rate of convergence by means of the modulus of continuity. Finally, using the bivariate type of Stancu-Schurer-Kantorovich operators, we display an example such that our approximation results are more powerful than the classical, statistical, and relative modular cases of Korovkin-type approximation theorems.  相似文献   

17.
In this work we show the presence of the well-known Catalan numbers in the study of the convergence and the dynamical behavior of a family of iterative methods for solving nonlinear equations. In fact, we introduce a family of methods, depending on a parameter mN∪{0}. These methods reach the order of convergence m+2 when they are applied to quadratic polynomials with different roots. Newton’s and Chebyshev’s methods appear as particular choices of the family appear for m=0 and m=1, respectively. We make both analytical and graphical studies of these methods, which give rise to rational functions defined in the extended complex plane. Firstly, we prove that the coefficients of the aforementioned family of iterative processes can be written in terms of the Catalan numbers. Secondly, we make an incursion into its dynamical behavior. In fact, we show that the rational maps related to these methods can be written in terms of the entries of the Catalan triangle. Next we analyze its general convergence, by including some computer plots showing the intricate structure of the Universal Julia sets associated with the methods.  相似文献   

18.

We study asymptotic properties of Bayesian multiple testing procedures and provide sufficient conditions for strong consistency under general dependence structure. We also consider a novel Bayesian multiple testing procedure and associated error measures that coherently accounts for the dependence structure present in the model. We advocate posterior versions of FDR and FNR as appropriate error rates and show that their asymptotic convergence rates are directly associated with the Kullback–Leibler divergence from the true model. The theories hold regardless of the class of postulated models being misspecified. We illustrate our results in a variable selection problem with autoregressive response variables and compare our procedure with some existing methods through simulation studies. Superior performance of the new procedure compared to the others indicates that proper exploitation of the dependence structure by multiple testing methods is indeed important. Moreover, we obtain encouraging results in a maize dataset, where we select influential marker variables.

  相似文献   

19.
In this paper we give two derivative-free computational algorithms for nonlinear least squares approximation. The algorithms are finite difference analogues of the Levenberg-Marquardt and Gauss methods. Local convergence theorems for the algorithms are proven. In the special case when the residuals are zero at the minimum, we show that certain computationally simple choices of the parameters lead to quadratic convergence. Numerical examples are included.On leave 1970–71 at Yale UniversityThe work of this author was supported in part by the National Science Foundation under Grant GJ-844.  相似文献   

20.
A new weak Galerkin (WG) finite element method is introduced and analyzed in this article for the biharmonic equation in its primary form. This method is highly robust and flexible in the element construction by using discontinuous piecewise polynomials on general finite element partitions consisting of polygons or polyhedra of arbitrary shape. The resulting WG finite element formulation is symmetric, positive definite, and parameter‐free. Optimal order error estimates in a discrete H2 norm is established for the corresponding WG finite element solutions. Error estimates in the usual L2 norm are also derived, yielding a suboptimal order of convergence for the lowest order element and an optimal order of convergence for all high order of elements. Numerical results are presented to confirm the theory of convergence under suitable regularity assumptions. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1003–1029, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号