首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
When the matrix of distances between cities is symmetric and circulant, the traveling salesman problem (TSP) reduces to the so-called symmetric circulant traveling salesman problem (SCTSP), that has applications in the design of reconfigurable networks, and in minimizing wallpaper waste. The complexity of the SCTSP is open, but conjectured to be NP-hard, and we compare different lower bounds on the optimal value that may be computed in polynomial time. We derive a new linear programming (LP) relaxation of the SCTSP from the semidefinite programming (SDP) relaxation in [E. de Klerk, D.V. Pasechnik, R. Sotirov, On semidefinite programming relaxation of the traveling salesman problem, SIAM Journal of Optimization 19 (4) (2008) 1559-1573]. Further, we discuss theoretical and empirical comparisons between this new bound and three well-known bounds from the literature, namely the Held-Karp bound [M. Held, R.M. Karp, The traveling salesman problem and minimum spanning trees, Operations Research 18 (1970) 1138-1162], the 1-tree bound, and the closed-form bound for SCTSP proposed in [J.A.A. van der Veen, Solvable cases of TSP with various objective functions, Ph.D. Thesis, Groningen University, The Netherlands, 1992].  相似文献   

2.
The traveling car renter problem (CaRS) is an extension of the classical traveling salesman problem (TSP) where different cars are available for use during the salesman’s tour. In this study we present three integer programming formulations for CaRS, of which two have quadratic objective functions and the other has quadratic constraints. The first model with a quadratic objective function is grounded on the TSP interpreted as a special case of the quadratic assignment problem in which the assignment variables refer to visitation orders. The second model with a quadratic objective function is based on the Gavish and Grave’s formulation for the TSP. The model with quadratic constraints is based on the Dantzig–Fulkerson–Johnson’s formulation for the TSP. The formulations are linearized and implemented in two solvers. An experiment with 50 instances is reported.  相似文献   

3.
We describe an algorithm for the asymmetric traveling salesman problem (TSP) using a new, restricted Lagrangean relaxation based on the assignment problem (AP). The Lagrange multipliers are constrained so as to guarantee the continued optimality of the initial AP solution, thus eliminating the need for repeatedly solving AP in the process of computing multipliers. We give several polynomially bounded procedures for generating valid inequalities and taking them into the Lagrangean function with a positive multiplier without violating the constraints, so as to strengthen the current lower bound. Upper bounds are generated by a fast tour-building heuristic. When the bound-strengthening techniques are exhausted without matching the upper with the lower bound, we branch by using two different rules, according to the situation: the usual subtour breaking disjunction, and a new disjunction based on conditional bounds. We discuss computational experience on 120 randomly generated asymmetric TSP's with up to 325 cities, the maximum time used for any single problem being 82 seconds. This is a considerable improvement upon earlier methods. Though the algorithm discussed here is for the asymmetric TSP, the approach can be adapted to the symmetric TSP by using the 2-matching problem instead of AP.Research supported by the National Science Foundation through grant no. MCS76-12026 A02 and the U.S. Office of Naval Research through contract no. N0014-75-C-0621 NR 047-048.  相似文献   

4.
This paper deals with the job-shop scheduling problem with sequence-dependent setup times. We propose a new method to solve the makespan minimization problem to optimality. The method is based on iterative solving via branch and bound decisional versions of the problem. At each node of the branch and bound tree, constraint propagation algorithms adapted to setup times are performed for domain filtering and feasibility check. Relaxations based on the traveling salesman problem with time windows are also solved to perform additional pruning. The traveling salesman problem is formulated as an elementary shortest path problem with resource constraints and solved through dynamic programming. This method allows to close previously unsolved benchmark instances of the literature and also provides new lower and upper bounds.  相似文献   

5.
The simple assembly line balancing problem is a classical integer programming problem in operations research. A set of tasks, each one being an indivisible amount of work requiring a number of time units, must be assigned to workstations without exceeding the cycle time. We present a new lower bound, namely the LP relaxation of an integer programming formulation based on Dantzig–Wolfe decomposition. We propose a column generation algorithm to solve the formulation. Therefore, we develop a branch-and-bound algorithm to exactly solve the pricing problem. We assess the quality of the lower bound by comparing it with other lower bounds and the best-known solution of the various instances from the literature. Computational results show that the lower bound is equal to the best-known objective function value for the majority of the instances. Moreover, the new LP based lower bound is able to prove optimality for an open problem.  相似文献   

6.
We consider the linear programming formulation of the asymmetric travelling salesman problem. Several new inequalities are stated which yield a sharper characterization in terms of linear inequalities of the travelling salesman polytope, i.e., the convex hull of tours. In fact, some of the new inequalities as well as some of the well-known subtour elimination constraints are indeed facets of the travelling salesman polytope, i.e., belong to the class of inequalities that uniquely characterize the convex hull of tours to an-city problem.  相似文献   

7.
This paper is concerned with upper bounds for the well-known Pallet Loading Problem (PLP), which is the problem of packing identical boxes into a rectangular pallet so as to maximize the number of boxes fitted. After giving a comprehensive review of the known upper bounds in the literature, we conduct a detailed analysis to determine which bounds dominate which others. The result is a ranking of the bounds in a partial order. It turns out that two of the bounds dominate all others: a bound due to Nelissen and a bound obtained from the linear programming relaxation of a set packing formulation. Experiments show that the latter is almost always optimal and can be computed quickly.  相似文献   

8.
The black-and-white travelling salesman problem (BWTSP) is an extension to the well-known TSP by partitioning the set of vertices into black and white vertices, and imposing cardinality and length constraints between two consecutive black vertices in a Hamiltonian tour. BWTSP has various applications in aircraft routing, telecommunication network design and logistics. In this paper, we develop several tabu search (TS) heuristics for solving the BWTSP. Our TS is built upon a new efficient neighbourhood structure, which exploits both the permutation and knapsack features of BWTSP. We also embed our TS as a heuristic procedure to improve the upper bound in a mixed-integer linear programming method. Extensive computational experiment on both benchmark and randomly generated instances shows effectiveness and efficiency of our algorithms. Our algorithms are able to obtain optimal and near optimal solutions to small instances in seconds, and find feasible solutions to large instances that have not been solved by the existing methods in the literature.  相似文献   

9.
Given an undirected graph with edge costs and both revenues and weights on the vertices, the traveling salesman subtour problem is to find a subtour that includes a depot vertex, satisfies a knapsack constraint on the vertex weights, and that minimizes edge costs minus vertex revenues along the subtour.We propose a decomposition scheme for this problem. It is inspired by the classic side-constrained 1-tree formulation of the traveling salesman problem, and uses stabilized column generation for the solution of the linear programming relaxation. Further, this decomposition procedure is combined with the addition of variable upper bound (VUB) constraints, which improves the linear programming bound. Furthermore, we present a heuristic procedure for finding feasible subtours from solutions to the column generation problems. An extensive experimental analysis of the behavior of the computational scheme is presented.  相似文献   

10.
The time dependent traveling salesman problem (TDTSP) is a generalization of the classical traveling salesman problem (TSP), where arc costs depend on their position in the tour with respect to the source node. While TSP instances with thousands of vertices can be solved routinely, there are very challenging TDTSP instances with less than 100 vertices. In this work, we study the polytope associated to the TDTSP formulation by Picard and Queyranne, which can be viewed as an extended formulation of the TSP. We determine the dimension of the TDTSP polytope and identify several families of facet-defining cuts. We obtain good computational results with a branch-cut-and-price algorithm using the new cuts, solving almost all instances from the TSPLIB with up to 107 vertices.  相似文献   

11.
We consider a single-machine scheduling problem which arises as a subproblem in a job-shop environment where the jobs have to be transported between the machines by a single transport robot. The robot scheduling problem may be regarded as a generalization of the traveling salesman problem with time windows, where additionally generalized precedence constraints (minimal time-lags) have to be respected. The objective is to determine a sequence of all nodes and corresponding starting times in the given time windows in such a way that all generalized precedence relations are respected and the sum of all traveling and waiting times is minimized.We calculate lower bounds for this problem using constraint propagation techniques and a linear programming formulation which is solved by a column generation procedure. Computational results are presented for test data arising from job-shop instances with a single transport robot and some modified traveling salesman instances.  相似文献   

12.
We introduce subclasses of the traveling salesman problem (TSP) and analyze the behaviour of heuristics on them. We derive bounds for the performance of the algorithms.  相似文献   

13.
A number of heuristics for the traveling salesman problem (TSP) rely on the assumption that the triangle inequality (TI) is satisfied. When TI does not hold, the paper proposes a transformation such that for the transformed problem the TI holds. Consequently, the bounds obtained for heuristics are valid with appropriate modification. Moreover, for a TSP satisfying TI the same transformation strengthens such bounds. The transformation essentially maps the problem into one that is minimal with respect to the property that TI holds. For the symmetric TSP the transformation is particularly simple. For an application of the transformation in the asymmetric case we need the dual solution of an assignment problem.  相似文献   

14.
A uniform parametric error bound is a uniform error estimate for feasible solutions of a family of parametric mathematical programming problems. It has been proven useful in exact penalty formulation for bilevel programming problems. In this paper, we derive new sufficient conditions for the existence of uniform parametric error bounds.  相似文献   

15.
This paper is concerned with the Online Quota Traveling Salesman Problem. Depending on the symmetry of the metric and the requirement for the salesman to return to the origin, four variants are analyzed. We present optimal deterministic algorithms for each variant defined on a general space, a real line, or a half-line. As a byproduct, an improved lower bound for a variant of Online TSP on a half-line is also obtained.  相似文献   

16.
The generalized traveling salesman problem (GTSP) is a well-known combinatorial optimization problem with a host of applications. It is an extension of the Traveling Salesman Problem (TSP) where the set of cities is partitioned into so-called clusters, and the salesman has to visit every cluster exactly once.  相似文献   

17.
We describe a new convex quadratic programming bound for the quadratic assignment problem (QAP). The construction of the bound uses a semidefinite programming representation of a basic eigenvalue bound for QAP. The new bound dominates the well-known projected eigenvalue bound, and appears to be competitive with existing bounds in the trade-off between bound quality and computational effort. Received: February 2000 / Accepted: November 2000?Published online January 17, 2001  相似文献   

18.
This paper deals with an unrelated machine scheduling problem of minimizing the total weighted flow time, subject to time-window job availability and machine downtime side constraints. We present a zero-one integer programming formulation of this problem. The linear programming relaxation of this formulation affords a tight lower bound and often generates an integer optimal solution for the problem. By exploiting the special structures inherent in the formulation, we develop some classes of strong valid inequalities that can be used to tighten the initial formulation, as well as to provide cutting planes in the context of a branch-and-cut procedure. A major computational bottleneck is the solution of the underlying linear programming relaxation because of the extremely high degree of degeneracy inherent in the formulation. In order to overcome this difficulty, we employ a Lagrangian dual formulation to generate lower and upper bounds and to drive the branch-and-bound algorithm. As a practical instance of the unrelated machine scheduling problem, we describe a combinatorial naval defense problem. This problem seeks to schedule a set of illuminators (passive homing devices) in order to strike a given set of targets using surface-to-air missiles in a naval battle-group engagement scenario. We present computational results for this problem using suitable realistic data.  相似文献   

19.
The precedence constrained traveling salesman problem (TSP-PC), or the sequential ordering problem (SOP), consists of finding an optimal TSP tour that will also satisfy the namesake precedence constraints, typically specified as a partial order or a directed acyclic graph. Its dynamic programming (DP) solution was proposed as early as 1979, however, by late 1990s, it mostly fell out of use in plain TSP-PC. Revisiting this method, we are able to close one of the long-standing TSPLIB SOP problem instances, ry48p.3.sop, and provide improved bounds on its time complexity. Harnessing the “omnivorous” nature of DP, we prove the validity of DP optimality principle for TSP-PC with both (i) abstract cost aggregation function, which may be the arithmetic + operation as in “ordinary” TSP or max as in Bottleneck TSP, or any other left-associative nondecreasing in the first argument operation and (ii) travel cost functions depending on the set of pending tasks (“sequence dependence”). Using the latter generalization, we close several TD-SOP (time-dependent TSP-PC) instances based on TSPLIB SOP as proposed by Kinable et al., including rbg253a.sop. Through the restricted DP heuristic, which was originally formulated for time-dependent TSP by Malandraki and Dial, we improve the state-of-the-art upper bounds for all yet unsolved TSPLIB-based TD-SOP instances, including those with more than 100 cities. We also improve worst-case complexity estimates for DP in TSP-PC.  相似文献   

20.
In this paper, we consider the computation of a rigorous lower error bound for the optimal value of convex optimization problems. A discussion of large-scale problems, degenerate problems, and quadratic programming problems is included. It is allowed that parameters, whichdefine the convex constraints and the convex objective functions, may be uncertain and may vary between given lower and upper bounds. The error bound is verified for the family of convex optimization problems which correspond to these uncertainties. It can be used to perform a rigorous sensitivity analysis in convex programming, provided the width of the uncertainties is not too large. Branch and bound algorithms can be made reliable by using such rigorous lower bounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号