首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 180 毫秒
1.
For the integrodifferential viscoelasticity equations, we study the problem of determining the coefficients of the equations and the kernels occurring in the integral terms of the system of equations. The density of the medium is assumed to be given. We suppose that the inhomogeneity support of the sought functions is included in some compact domain B 0. We consider a series of inverse problems in which an impulse source is concentrated at the points y of the boundary of B 0. The point y is the parameter of the problem. The given information about the solution is the trace of the solution to the Cauchy problem with zero initial data. This trace is given on the boundary of B 0 for all y ∈ ?B 0 and for a finite time interval. The main result of the article consists in obtaining uniqueness theorems for a solution to the initial inverse problem.  相似文献   

2.
In this paper, we first consider the least-squares solution of the matrix inverse problem as follows: Find a hermitian anti-reflexive matrix corresponding to a given generalized reflection matrix J such that for given matrices X, B we have minA ||AX - B||. The existence theorems are obtained, and a general representation of such a matrix is presented. We denote the set of such matrices by SE. Then the matrix nearness problem for the matrix inverse problem is discussed. That is: Given an arbitrary A^*, find a matrix A E SE which is nearest to A^* in Frobenius norm. We show that the nearest matrix is unique and provide an expression for this nearest matrix.  相似文献   

3.
The inverse traveling salesman problem belongs to the class of ??inverse combinatorial optimization?? problems. In an inverse combinatorial optimization problem, we are given a feasible solution for an instance of a particular combinatorial optimization problem, and the task is to adjust the instance parameters as little as possible so that the given solution becomes optimal in the new instance. In this paper, we consider a variant of the inverse traveling salesman problem, denoted by ITSP W,A , by taking into account a set W of admissible weight systems and a specific algorithm. We are given an edge-weighted complete graph (an instance of TSP), a Hamiltonian tour (a feasible solution of TSP) and a specific algorithm solving TSP. Then, ITSP W,A , is the problem to find a new weight system in W which minimizes the difference from the original weight system so that the given tour can be selected by the algorithm as a solution. We consider the cases ${W \in \{\mathbb{R}^{+m}, \{1, 2\}^m , \Delta\}}$ where ?? denotes the set of edge weight systems satisfying the triangular inequality and m is the number of edges. As for algorithms, we consider a local search algorithm 2-opt, a greedy algorithm closest neighbor and any optimal algorithm. We devise both complexity and approximation results. We also deal with the inverse traveling salesman problem on a line for which we modify the positions of vertices instead of edge weights. We handle the cases ${W \in \{\mathbb{R}^{+n}, \mathbb{N}^n\}}$ where n is the number of vertices.  相似文献   

4.
The inverse problem of finding the coefficients q(s) and p(s) in the equation u tt = a 2 u xx + q(u)u t ? p(u)u x is investigated. As overdetermination required in the inverse setting, two additional conditions are set: a boundary condition and a condition with a fixed value of the timelike variable. An iteration method for solving the inverse problem is proposed based on an equivalent system of integral equations of the second kind. A uniqueness theorem and an existence theorem in a small domain are proved for the inverse problem to substantiate the convergence of the algorithm.  相似文献   

5.
We study the weighted Fermat-Torricelli problem for tetrahedra in R3 and solve an “inverse” problem by introducing a method of differentiation. The solution of the inverse problem is the main result which states that: Given the Fermat-Torricelli point A0 with the vertices lie on four prescribed rays, find the ratios between every pair of non-negative weights of two corresponding rays such that the sum of the four non-negative weights is a constant number. An application of the inverse weighted Fermat-Torricelli problem is the strong invariance principle of the weighted Fermat-Torricelli point which gives some classes of tetrahedra that could be named “evolutionary tetrahedra”.  相似文献   

6.
In this paper, we study the inverse spectral problem on a finite interval for the integro-differential operator ? which is the perturbation of the Sturm-Liouville operator by the Volterra integral operator. The potential q belongs to L 2[0, π] and the kernel of the integral perturbation is integrable in its domain of definition. We obtain a local solution of the inverse reconstruction problem for the potential q, given the kernel of the integral perturbation, and prove the stability of this solution. For the spectral data we take the spectra of two operators given by the expression for ? and by two pairs of boundary conditions coinciding at one of the finite points.  相似文献   

7.
The nonnegative inverse eigenvalue problem is that given a family of complex numbers λ={λ1,…,λn}, find a nonnegative matrix of order n with spectrum λ. This problem is difficult and remains unsolved partially. In this paper, we focus on its generalization that the reconstructed nonnegative matrices should have some prescribed entries. It is easy to see that this new problem will come back to the common nonnegative inverse eigenvalue problem if there is no constraint of the locations of entries. A numerical isospectral flow method which is developed by hybridizing the optimization theory and steepest descent method is used to study the reconstruction. Moreover, an error estimate of the numerical iteration for ordinary differential equations on the matrix manifold is presented. After that, a numerical method for the nonnegative symmetric inverse eigenvalue problem with prescribed entries and its error estimate are considered. Finally, the approaches are verified by the numerical test results.  相似文献   

8.
The uniqueness problem of the inverse nodal problem for the differential pencils defined on interval [0, 1] with the Dirichlet boundary conditions is considered. We prove that a bilaterally dense subset of the nodal set in interior subinterval (a 1, a 2)(? [0, 1]) can determine the pencil uniquely. However, in the case of 1/2 ? [a 1, a 2] we need additional spectral information to treat this problem, which is associated with the derivatives of eigenfunctions at some known nodal points.  相似文献   

9.
A necessary and sufficient condition for an m×n matrix A over Fq having a Moor–Penrose generalized inverse (M–P inverse for short) was given in (C. K. Wu and E. Dawson, 1998, Finite Fields Appl. 4, 307–315). In the present paper further necessary and sufficient conditions are obtained, which make clear the set of m×n matrices over Fq having an M–P inverse and reduce the problem of constructing M–P invertible matrices to that of constructing subspaces of certain type with respect to some classical groups. Moreover, an explicit formula for the M–P inverse of a matrix which is M–P invertible is also given. Based on this reduction, both the construction problem and the enumeration problem are solved by borrowing results in geometry of classical groups over finite fields (Z. X. Wan, 1993, “Geometry of Classical Groups over Finite Fields”, Studentlitteratur, Chatwell Bratt).  相似文献   

10.
In this paper, we first consider the existence of and the general expression for the solution to the constrained inverse eigenvalue problem defined as follows: given a generalized reflection matrix PR n×n , a set of complex n-vectors {x i } i=1 m , a set of complex numbers {λ i } i=1 m , and an s-by-s real matrix C 0, find an n-by-n real reflexive matrix C such that the s-by-s leading principal submatrix of C is C 0, and {x i } i=1 m and {λ i } i=1 m are the eigenvectors and eigenvalues of C, respectively. We are then concerned with the best approximation problem for the constrained inverse problem whose solution set is nonempty. That is, given an arbitrary real n-by-n matrix $\tilde{C}$ , find a matrix C which is the solution to the constrained inverse problem such that the distance between C and $\tilde{C}$ is minimized in the Frobenius norm. We give an explicit solution and a numerical algorithm to the best approximation problem. An illustrative experiment is also presented.  相似文献   

11.
A generalized inverse problem for the identification of the absorption coefficient for a hyperbolic system is considered. The well-posedness of the problem is examined. It is proved that the regular part of the solution is an L 2 function, which reduces the inverse problem to minimizing the error functional. The gradient of the functional is determined in explicit form from the adjoint problem, and approximate formulas for its calculation are derived. A regularization algorithm for the solution of the inverse problem is considered. Numerical results obtained for various excitation sources are displayed.  相似文献   

12.
The inverse 1-median problem consists in modifying the weights of the customers at minimum cost such that a prespecified supplier becomes the 1-median of modified location problem. A linear time algorithm is first proposed for the inverse problem under weighted l ?? norm. Then two polynomial time algorithms with time complexities O(n log n) and O(n) are given for the problem under weighted bottleneck-Hamming distance, where n is the number of vertices. Finally, the problem under weighted sum-Hamming distance is shown to be equivalent to a 0-1 knapsack problem, and hence is ${\mathcal{NP}}$ -hard.  相似文献   

13.
This paper is devoted to the study of the following inverse problem: Given the 1-D wave equation: (1) $$\begin{gathered} \rho (z)\frac{{\partial ^2 y}}{{\partial t^2 }} - \frac{\partial }{{\partial z}}\left( {\mu (z)\frac{{\partial y}}{{\partial z}}} \right) = 0 z > 0,t > 0 \hfill \\ + boundary excitation at z = 0 + zero initial conditons \hfill \\ \end{gathered} $$ how to determine the parameter functions (ρ(z),μ(z)) from the only boundary measurementY(t) ofy(z, t)/z=0. This inverse problem is motivated by the reflection seismic exploration techniques, and is known to be very unstable. We first recall in §1 how to constructequivalence classes σ(x) of couples (ρ(z),ρ(z)) that areundistinguishable from the givenboundary measurements Y(t). Then we give in §2 existence theorems of the solutiony of the state equations (1), and study the mappingσ→Y: We define on the set of equivalence classes Σ={σ(x)|σ min ?σ(x) ? σ max for a.e.x} (σ min andσ max a priori given) a distanced which is weak enough to make Σ compact, but strong enough to ensure the (lipschitz) continuity of the mappingσ→Y. This ensures the existence of a solution to the inverse problem set as an optimization problem on Σ. The fact that this distanced is much weaker than the usualL 2 norm explains the tendency to unstability reported by many authors. In §3, the case of piecewise constant parameter is carefully studied in view of the numerical applications, and a theorem of stability of the inverse problem is given. In §4, numerical results on simulated but realistic datas (300 unknown values forσ) are given for the interpretation of seismic profiles with the above method.  相似文献   

14.
This article considers the inverse absolute and the inverse vertex 1-center location problems with uniform cost coefficients on a tree network T with n+1 vertices. The aim is to change (increase or reduce) the edge lengths at minimum total cost with respect to given modification bounds such that a prespecified vertex s becomes an absolute (or a vertex) 1-center under the new edge lengths. First an O(nlogn) time method for solving the height balancing problem with uniform costs is described. In this problem the height of two given rooted trees is equalized by decreasing the height of one tree and increasing the height of the second rooted tree at minimum cost. Using this result a combinatorial O(nlogn) time algorithm is designed for the uniform-cost inverse absolute 1-center location problem on tree T. Finally, the uniform-cost inverse vertex 1-center location problem on T is investigated. It is shown that the problem can be solved in O(nlogn) time if all modified edge lengths remain positive. Dropping this condition, the general model can be solved in O(rvnlogn) time where the parameter rv is bounded by ⌈n/2⌉. This corrects an earlier result of Yang and Zhang.  相似文献   

15.
In this paper we present a numerical method for solving the Dirichlet problem for a two-dimensional wave equation. We analyze the ill-posedness of the problem and construct a regularization algorithm. Using the Fourier series expansion with respect to one variable, we reduce the problem to a sequence of Dirichlet problems for one-dimensional wave equations. The first stage of regularization consists in selecting a finite number of problems from this sequence. Each of the selected Dirichlet problems is formulated as an inverse problem Aq = f with respect to a direct (well-posed) problem. We derive formulas for singular values of the operator A in the case of constant coefficients and analyze their behavior to judge the degree of ill-posedness of the corresponding problem. The problem Aq = f on a uniform grid is reduced to a system of linear algebraic equations A ll q = F. Using the singular value decomposition, we find singular values of the matrix A ll and develop a numerical algorithm for constructing the r-solution of the original problem. This algorithm was tested on a discrete problem with relatively small number of grid nodes. To improve the calculated r-solution, we applied optimization but observed no noticeable changes. The results of computational experiments are illustrated.  相似文献   

16.
We consider an inverse problem for a one-dimensional integrodifferential hyperbolic system, which comes from a simplified model of thermoelasticity. This inverse problem aims to identify the displacement u, the temperature η and the memory kernel k simultaneously from the weighted measurement data of temperature. By using the fixed point theorem in suitable Sobolev spaces, the global in time existence and uniqueness results of this inverse problem are obtained. Moreover, we prove that the solution to this inverse problem depends continuously on the noisy data in suitable Sobolev spaces. For this nonlinear inverse problem, our theoretical results guarantee the solvability for the proposed physical model and the well-posedness for small measurement time τ, which is quite different from general inverse problems.  相似文献   

17.
For a third-order equation of the parabolic-hyperbolic type, we suggest a method for studying a boundary value problem by solving the inverse problem for a second-order equation of the mixed parabolic-hyperbolic type with unknown right-hand side depending implicitly on time. We prove a criterion for the uniqueness of the solution of the boundary value problem constructed in the form of the sum of a series in the eigenfunctions of the corresponding one-dimensional Sturm-Liouville problem. We prove the stability of the solution with respect to the boundary data in the norms of the spaces W 2 n [0, 1] and $C\left( {\bar D} \right)$ .  相似文献   

18.
The derivation problem for a locally compact group G asserts that each bounded derivation from L 1(G) to L 1(G) is implemented by an element of M(G). Recently a simple proof of this result was announced. We show that basically the same argument with some extra manipulations with idempotents solves the module derivation problem for inverse semigroups, asserting that for an inverse semigroup S with set of idempotents E and maximal group homomorphic image G S , if E acts on S trivially from the left and by multiplication from the right, any bounded module derivation from ? 1(S) to ? 1(G S ) is inner.  相似文献   

19.
In this paper, we investigate multiplicative properties of the classical Dold-Kan correspondence. The inverse of the normalization functor maps commutative differential graded algebras to E-algebras. We prove that it in fact sends algebras over arbitrary differential graded E-operads to E-algebras in simplicial modules and is part of a Quillen adjunction. More generally, this inverse maps homotopy algebras to weak homotopy algebras. We prove the corresponding dual results for algebras under the conormalization, and for coalgebra structures under the normalization resp. the inverse of the conormalization.  相似文献   

20.
We solve the inverse spectral problem of recovering the singular potential from W−12(0,1) of a Sturm-Liouville operator by its spectra on the three intervals [0,1], [0,a], and [a,1] for some a∈(0,1). Necessary and sufficient conditions on the spectral data are derived, and uniqueness of the solution is analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号