首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The graph of an algebra A is the relational structure G(A) in which the relations are the graphs of the basic operations of A. For a class ?? of algebras let G(??)={G(A)∣A∈??}. Assume that ?? is a class of semigroups possessing a nontrivial member with a neutral element and let ? be the universal Horn class generated by G(??). We prove that the Boolean core of ?, i.e., the topological prevariety generated by finite members of ? equipped with the discrete topology, does not admit a first-order axiomatization relative to the class of all Boolean topological structures in the language of ?. We derive analogous results when ?? is a class of monoids or groups with a nontrivial member.  相似文献   

2.
Given a continuous function f:X→? on a topological space X, its level set f ?1(a) changes continuously as the real value a changes. Consequently, the connected components in the level sets appear, disappear, split and merge. The Reeb graph of f summarizes this information into a graph structure. Previous work on Reeb graph mainly focused on its efficient computation. In this paper, we initiate the study of two important aspects of the Reeb graph, which can facilitate its broader applications in shape and data analysis. The first one is the approximation of the Reeb graph of a function on a smooth compact manifold M without boundary. The approximation is computed from a set of points P sampled from M. By leveraging a relation between the Reeb graph and the so-called vertical homology group, as well as between cycles in M and in a Rips complex constructed from P, we compute the H 1-homology of the Reeb graph from P. It takes O(nlogn) expected time, where n is the size of the 2-skeleton of the Rips complex. As a by-product, when M is an orientable 2-manifold, we also obtain an efficient near-linear time (expected) algorithm for computing the rank of H 1(M) from point data. The best-known previous algorithm for this problem takes O(n 3) time for point data. The second aspect concerns the definition and computation of the persistent Reeb graph homology for a sequence of Reeb graphs defined on a filtered space. For a piecewise-linear function defined on a filtration of a simplicial complex K, our algorithm computes all persistent H 1-homology for the Reeb graphs in $O(n n_{e}^{3})$ time, where n is the size of the 2-skeleton and n e is the number of edges in K.  相似文献   

3.
A graph Γ is called half-arc-transitive if it’s automorphism group Aut Γ is transitive on the vertex set and edge set, but not on the arc set of the graph Γ, and it is called 2-path-transitive if Aut Γ is transitive on the set of the 2-paths. In this paper we construct a class of 2-path-transitive graphs from some symmetric groups, based on which a new class of half-arc-transitive graphs is given.  相似文献   

4.
For a block design ${\mathcal{D}}$ , a series of block intersection graphs G i , or i-BIG( ${\mathcal{D}}$ ), i = 0, . . . ,k is defined in which the vertices are the blocks of ${\mathcal{D}}$ , with two vertices adjacent if and only if the corresponding blocks intersect in exactly i elements. A silver graph G is defined with respect to a maximum independent set of G, called an α-set. Let G be an r-regular graph and c be a proper (r + 1)-coloring of G. A vertex x in G is said to be rainbow with respect to c if every color appears in the closed neighborhood ${N[x] = N(x) \cup \{x\}}$ . Given an α-set I of G, a coloring c is said to be silver with respect to I if every ${x\in I}$ is rainbow with respect to c. We say G is silver if it admits a silver coloring with respect to some I. Finding silver graphs is of interest, for a motivation and progress in silver graphs see Ghebleh et al. (Graphs Combin 24(5):429–442, 2008) and Mahdian and Mahmoodian (Bull Inst Combin Appl 28:48–54, 2000). We investigate conditions for 0-BIG( ${\mathcal{D}}$ ) and 1-BIG( ${\mathcal{D}}$ ) of Steiner 2-designs ${{\mathcal{D}}=S(2,k,v)}$ to be silver.  相似文献   

5.
We show that there is one-to-one correspondence between certain algebraically and categorically defined subobjects, congruences and admissible preorders of S-posets. Using preservation properties of Pos-equivalence functors between Pos-categories we deduce that if S and T are Morita equivalent partially ordered monoids and F:Pos S Pos T is a Pos-equivalence functor then an S-poset A S and the T-poset F(A S ) have isomorphic lattices of (regular, downwards closed) subobjects, congruences and admissible preorders. We also prove that if A S has some flatness property then F(A S ) has the same property.  相似文献   

6.
In this note, we characterize the Grassmann embedding of H(q), q even, as the unique full embedding of H(q) in PG(12, q) for which each ideal line of H(q) is contained in a plane. In particular, we show that no such embedding exists for H(q), with q odd. As a corollary, we can classify all full polarized embeddings of H(q) in PG(12, q) with the property that the lines through any point are contained in a solid; they necessarily are Grassmann embeddings of H(q), with q even.  相似文献   

7.
A subset ${S \subseteq V(G)}$ is a double dominating set of G if S dominates every vertex of G at least twice. The double domination number dd(G) is the minimum cardinality of a double dominating set of G. The double domination subdivision number sd dd (G) is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the double domination number. Atapour et al. (Discret Appl Math, 155:1700–1707, 2007) posed an open problem: Prove or disprove: let G be a connected graph with no isolated vertices, then 1 ≤ sd dd (G) ≤ 2. In this paper, we disprove the problem by constructing some connected graphs with no isolated vertices and double domination subdivision number three.  相似文献   

8.
Spanning connectivity of graphs has been intensively investigated in the study of interconnection networks (Hsu and Lin, Graph Theory and Interconnection Networks, 2009). For a graph G and an integer s > 0 and for ${u, v \in V(G)}$ with u ≠ v, an (s; u, v)-path-system of G is a subgraph H consisting of s internally disjoint (u,v)-paths. A graph G is spanning s-connected if for any ${u, v \in V(G)}$ with u ≠ v, G has a spanning (s; u, v)-path-system. The spanning connectivity κ*(G) of a graph G is the largest integer s such that G has a spanning (k; u, v)-path-system, for any integer k with 1 ≤ k ≤ s, and for any ${u, v \in V(G)}$ with u ≠ v. An edge counter-part of κ*(G), defined as the supereulerian width of a graph G, has been investigated in Chen et al. (Supereulerian graphs with width s and s-collapsible graphs, 2012). In Catlin and Lai (Graph Theory, Combinatorics, and Applications, vol. 1, pp. 207–222, 1991) proved that if a graph G has 2 edge-disjoint spanning trees, and if L(G) is the line graph of G, then κ*(L(G)) ≥ 2 if and only if κ(L(G)) ≥ 3. In this paper, we extend this result and prove that for any integer k ≥ 2, if G 0, the core of G, has k edge-disjoint spanning trees, then κ*(L(G)) ≥ k if and only if κ(L(G)) ≥ max{3, k}.  相似文献   

9.
An idempotent residuated po-monoid is semiconic if it is a subdirect product of algebras in which the monoid identity is comparable with all other elements. It is proved that the quasivariety SCIP of all semiconic idempotent commutative residuated po-monoids is locally finite. The lattice-ordered members of this class form avariety SCIL, which is not locally finite, but it is proved that SCIL has the finite embeddability property (FEP). More generally, for every relative subvariety K of SCIP, the lattice-ordered members of K have the FEP. This gives a unified explanation of the strong finite model property for a range of logical systems. It is also proved that SCIL has continuously many semisimple subvarieties, and that the involutive algebras in SCIL are subdirect products of chains.  相似文献   

10.
We denote by G[X, Y] a bipartite graph G with partite sets X and Y. Let d G (v) be the degree of a vertex v in a graph G. For G[X, Y] and ${S \subseteq V(G),}$ we define ${\sigma_{1,1}(S):=\min\{d_G(x)+d_G(y) : (x,y) \in (X \cap S,Y) \cup (X, Y \cap S), xy \not\in E(G)\}}$ . Amar et al. (Opusc. Math. 29:345–364, 2009) obtained σ 1,1(S) condition for cyclability of balanced bipartite graphs. In this paper, we generalize the result as it includes the case of unbalanced bipartite graphs: if G[X, Y] is a 2-connected bipartite graph with |X| ≥ |Y| and ${S \subseteq V(G)}$ such that σ 1,1(S) ≥ |X| + 1, then either there exists a cycle containing S or ${|S \cap X| > |Y|}$ and there exists a cycle containing Y. This degree sum condition is sharp.  相似文献   

11.
For a simple undirected graph G, denote by A(G) the (0,1)-adjacency matrix of G. Let thematrix S(G) = J-I-2A(G) be its Seidel matrix, and let S G (??) = det(??I-S(G)) be its Seidel characteristic polynomial, where I is an identity matrix and J is a square matrix all of whose entries are equal to 1. If all eigenvalues of S G (??) are integral, then the graph G is called S-integral. In this paper, our main goal is to investigate the eigenvalues of S G (??) for the complete multipartite graphs G = $G = K_{n_1 ,n_2 ,...n_t } $ . A necessary and sufficient condition for the complete tripartite graphs K m,n,t and the complete multipartite graphs to be S-integral is given, respectively.  相似文献   

12.
In this paper we shall consider problems of the following type. SupposeG is some set,U is some family of subsests ofG (e.g.G could be the Euclidean plane andU might be the family of all sets of Lebesgue measure zero), andG is any directed graph overG (i.e. any collection of ordered pairs of members ofG) such that for eachgG the set {h:<g,h>∈G} belongs to the familyU. How large a setSυG must there exist with the property that (S×S) ∩G=, i.e. such that it is totally disconnected? In many of the cases we shall consider (including the particular example above), the answer will turn out to be independent of the axioms of set theory and will remain so even after adjoining the negation of the continuum hypothesis.  相似文献   

13.
A graph X is said to be G-semisymmetric if it is regular and there exists a subgroup G of A := Aut (X) acting transitively on its edge set but not on its vertex set. In the case of GA, we call X a semisymmetric graph. Let p be a prime. It was shown by Folkman (J Comb Theory 3:215–232, 1967) that a regular edge-transitive graph of order 2p or 2p 2 is necessarily vertex-transitive. The smallest semisymmetric graph is the Folkman graph. In this study, we classify all connected cubic semisymmetric graphs of order 18p n , where p is a prime and \({n \geq 1}\) .  相似文献   

14.
In this paper we introduce the notion of Σ-colouring of a graph G: For given subsets Σ(v) of neighbours of v, for every vV (G), this is a proper colouring of the vertices of G such that, in addition, vertices that appear together in some Σ(v) receive different colours. This concept generalises the notion of colouring the square of graphs and of cyclic colouring of graphs embedded in a surface. We prove a general result for graphs embeddable in a fixed surface, which implies asymptotic versions of Wegner’s and Borodin’s Conjecture on the planar version of these two colourings. Using a recent approach of Havet et al., we reduce the problem to edge-colouring of multigraphs, and then use Kahn’s result that the list chromatic index is close to the fractional chromatic index. Our results are based on a strong structural lemma for graphs embeddable in a fixed surface, which also implies that the size of a clique in the square of a graph of maximum degree Δ embeddable in some fixed surface is at most $ \frac{3} {2}\Delta $ plus a constant.  相似文献   

15.
We give a complete characterization both in terms of security and design of all currently existing group homomorphic encryption schemes, i.e., existing encryption schemes with a group homomorphic decryption function such as ElGamal and Paillier. To this end, we formalize and identify the basic underlying structure of all existing schemes and say that such schemes are of shift-type. Then, we construct an abstract scheme that represents all shift-type schemes (i.e., every scheme occurs as an instantiation of the abstract scheme) and prove its IND-CCA1 (resp. IND-CPA) security equivalent to the hardness of an abstract problem called Splitting Oracle-Assisted Subgroup Membership Problem (SOAP) (resp. Subgroup Membership Problem, SMP). Roughly, SOAP asks for solving an SMP instance, i.e., for deciding whether a given ciphertext is an encryption of the neutral element of the ciphertext group, while allowing access to a certain oracle beforehand. Our results allow for contributing to a variety of open problems such as the IND-CCA1 security of Paillier’s scheme, or the use of linear codes in group homomorphic encryption. Furthermore, we design a new cryptosystem which provides features that are unique up to now: Its IND-CPA security is based on the k-linear problem introduced by Shacham, and Hofheinz and Kiltz, while its IND-CCA1 security is based on a new k-problem that we prove to have the same progressive property, namely that if the k-instance is easy in the generic group model, the (k+1)-instance is still hard.  相似文献   

16.
It is well known that the category KHaus of compact Hausdorff spaces is dually equivalent to the category KRFrm of compact regular frames. By de Vries duality, KHaus is also dually equivalent to the category DeV of de Vries algebras, and so DeV is equivalent to KRFrm, where the latter equivalence can be described constructively through Booleanization. Our purpose here is to lift this circle of equivalences and dual equivalences to the setting of stably compact spaces. The dual equivalence of KHaus and KRFrm has a well-known generalization to a dual equivalence of the categories StKSp of stably compact spaces and StKFrm of stably compact frames. Here we give a common generalization of de Vries algebras and stably compact frames we call proximity frames. For the category PrFrm of proximity frames we introduce the notion of regularization that extends that of Booleanization. This yields the category RPrFrm of regular proximity frames. We show there are equivalences and dual equivalences among PrFrm, its subcategories StKFrm and RPrFrm, and StKSp. Restricting to the compact Hausdorff setting, the equivalences and dual equivalences among StKFrm, RPrFrm, and StKSp yield the known ones among KRFrm, DeV, and KHaus. The restriction of PrFrm to this setting provides a new category StrInc whose objects are frames with strong inclusions and whose morphisms and composition are generalizations of those in DeV. Both KRFrm and DeV are subcategories of StrInc that are equivalent to StrInc. For a compact Hausdorff space X, the category StrInc not only contains both the frame of open sets of X and the de Vries algebra of regular open sets of X, these two objects are isomorphic in StrInc, with the second being the regularization of the first. The restrictions of these categories are considered also in the setting of spectral spaces, Stone spaces, and extremally disconnected spaces.  相似文献   

17.
A partial plane is a triple Π=(P,L,I) whereP is the set of points,L the set of lines andI?PXL the incidence relation satisfying the axiom that $$p_i {\rm I}\ell _j (i,j = 1,2) implies p_1 = p_2 or \ell _1 = \ell _2 .$$ Using methods of E. MENDELSOHN, Z. HEDRLIN and A. PULTR we prove the followingTHEOREM. Given a subgroup G ofthe collineation group Aut Π ofsome partial plane Π, there is a projective plane Π′such that Πis invariant under the automorphisms of Π′, Aut Π′Π=G,and we obtain an isomorphism of Aut Πonto Aut Π′by restriction. Moreover, any 3 points (lines) of Πare collinear (concurrent) in Π iff they are so in Π′. Corollaries of this result improve some of E. Mendelsohn's theorems [6,7].  相似文献   

18.
We prove formulas for SK1(E, τ), which is the unitary SK1 for a graded division algebra E finite-dimensional and semiramified over its center T with respect to a unitary involution τ on E. Every such formula yields a corresponding formula for SK1(D, ρ) where D is a division algebra tame and semiramified over a Henselian valued field and ρ is a unitary involution on D. For example, it is shown that if ${\sf{E} \sim \sf{I}_0 \otimes_{\sf{T}_0}\sf{N}}$ where I 0 is a central simple T 0-algebra split by N 0 and N is decomposably semiramified with ${\sf{N}_0 \cong L_1\otimes_{\sf{T}_0} L_2}$ with L 1, L 2 fields each cyclic Galois over T 0, then $${\rm SK}_1(\sf{E}, \tau) \,\cong\ {\rm Br}(({L_1}\otimes_{\sf{T}_0} {L_2})/\sf{T}_0;\sf{T}_0^\tau)\big/ \left[{\rm Br}({L_1}/\sf{T}_0;\sf{T}_0^\tau)\cdot {\rm Br}({L_2}/\sf{T}_0;\sf{T}_0^\tau) \cdot \langle[\sf{I}_0]\rangle\right].$$   相似文献   

19.
A graph G is k-factor-critical if G ? S has a perfect matching for any k-subset S of V(G). In this paper, we investigate the factor-criticality in Cartesian products of graphs and show that Cartesian product of an m-factor-critical graph and an n-factor-critical graph is ${(m+n+\varepsilon )}$ -factor-critical, where ${\varepsilon = 0}$ if both of m and n are even; ${\varepsilon = 1}$ , otherwise. Moreover, this result is best possible.  相似文献   

20.
Let D be a non-negative integer-valued random variable and let G = (V, E) be an infinite transitive finite-degree graph. Continuing the work of Deijfen and Meester (Adv Appl Probab 38:287–298) and Deijfen and Jonasson (Electron Comm Probab 11:336–346), we seek an Aut(G)-invariant random graph model with V as vertex set, iid degrees distributed as D and finite mean connections (i.e., the sum of the edge lengths in the graph metric of G of a given vertex has finite expectation). It is shown that if G has either polynomial growth or rapid growth, then such a random graph model exists if and only if ${\mathbb{E}[D\,R(D)] < \infty}$ . Here R(n) is the smallest possible radius of a combinatorial ball containing more than n vertices. With rapid growth we mean that the number of vertices in a ball of radius n is of at least order exp(n c ) for some c > 0. All known transitive graphs have either polynomial or rapid growth. It is believed that no other growth rates are possible. When G has rapid growth, the result holds also when the degrees form an arbitrary invariant process. A counter-example shows that this is not the case when G grows polynomially. For this case, we provide other, quite sharp, conditions under which the stronger statement does and does not hold respectively. Our work simplifies and generalizes the results for ${G\,=\,\mathbb {Z}}$ in [4] and proves, e.g., that with ${G\,=\,\mathbb {Z}^d}$ , there exists an invariant model with finite mean connections if and only if ${\mathbb {E}[D^{(d+1)/d}] < \infty}$ . When G has exponential growth, e.g., when G is a regular tree, the condition becomes ${\mathbb {E}[D\,\log\,D] < \infty}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号