首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
We study subtree-prune-and-regraft (SPR) operations on leaf-labelled rooted binary trees, also known as rooted binary phylogenetic trees. This study is motivated by the problem of graphically representing evolutionary histories of biological sequences subject to recombination. We investigate some basic properties of the induced SPR-metric on the space of leaf-labelled rooted binary trees with n leaves. In contrast to the case of unrooted trees, the number |U(T)| of trees in which are one SPR operation away from a given tree depends on the topology of T. In this paper, we construct recursion relations which allow one to determine the unit-neighbourhood size |U(T)| efficiently for any tree topology. In fact, using the recursion relations we are able to derive a simple closed-form formula for the unit-neighbourhood size. As a corollary, we construct sharp upper and lower bounds on the size of unit-neighbourhoods and investigate the diameter of . Lastly, we consider an enumeration problem relevant to population genetics.AMS Subject Classification: 05C05, 92D15.  相似文献   

2.
Dragan Mašulović 《Order》2007,24(4):215-226
A structure is called homogeneous if every isomorphism between finite substructures of the structure extends to an automorphism of the structure. Recently, P. J. Cameron and J. Nešetřil introduced a relaxed version of homogeneity: we say that a structure is homomorphism-homogeneous if every homomorphism between finite substructures of the structure extends to an endomorphism of the structure. In this paper we characterize homomorphism-homogeneous partially ordered sets (where a homomorphism between partially ordered sets A and B is a mapping f : AB satisfying ). We show that there are five types of homomorphism-homogeneous partially ordered sets: partially ordered sets whose connected components are chains; trees; dual trees; partially ordered sets which split into a tree and a dual tree; and X 5-dense locally bounded partially ordered sets. Supported by the Ministry od Science and Environmental Protection of the Republic of Serbia, Grant No. 144017.  相似文献   

3.
We consider a variant of the classical two median facility location problem on a tree in which vertices are allowed to have positive or negative weights. This problem was proposed by Burkard et al. in 2000 (R.E. Burkard, E. Çela, H. Dollani, 2-medians in trees with pos/neg-weights, Discrete Appl. Math. 105 (2000) 51-71). who looked at two objectives, finding the total minimum weighted distance (MWD) and the total weighted minimum distance (WMD). Their approach finds an optimal solution in O(n2) time and O(n3) time, respectively, with better performance for special trees such as paths and stars. We propose here an O(nlogn) algorithm for the MWD problem on trees of arbitrary shape. We also briefly discuss the WMD case and argue that it can be solved in time. However, a systematic exposition of the later case cannot be contained in this paper.  相似文献   

4.
This paper is a sequel to our [7]. In that paper we constructed a 10 tree of avoidable points. Here we construct a 10 tree of shadow points. This tree is a tree of sharp filters, where a sharp filter is a nested sequence of basic open sets converging to a point. In the construction we assign to each basic open set on the tree an address in 2<. One interesting fact is that while our 10 tree of sharp filters (a subtree of <) is isomorphic to the tree of addresses (a subtree of 2<), the tree of addresses is recursively enumerable but not recursive. To achieve this end we use a finite injury priority argument.Mathematics Subject Classification (2000): 03D45, 03D80, 03C57, 54A20  相似文献   

5.
We study conditions under which the Hausdorff quasi-uniformity UH of a quasi-uniform space (X,U) on the set P0(X) of the nonempty subsets of X is bicomplete.Indeed we present an explicit method to construct the bicompletion of the T0-quotient of the Hausdorff quasi-uniformity of a quasi-uniform space. It is used to find a characterization of those quasi-uniform T0-spaces (X,U) for which the Hausdorff quasi-uniformity of their bicompletion on is bicomplete.  相似文献   

6.
The construct M of metered spaces and contractions is known to be a superconstruct in which all metrically generated constructs can be fully embedded. We show that M has one point extensions and that quotients in M are productive. We construct a Cartesian closed topological extension of M and characterize the canonical function spaces with underlying sets Hom(X,Y) for metered spaces X and Y. Finally we obtain an internal characterization of the objects in the Cartesian closed topological hull of M.  相似文献   

7.
The aim of this paper is to give a complete picture of approximability for two tree consensus problems which are of particular interest in computational biology: Maximum Agreement SubTree (MAST) and Maximum Compatible Tree (MCT). Both problems take as input a label set and a collection of trees whose leaf sets are each bijectively labeled with the label set. Define the size of a tree as the number of its leaves. The well-known MAST problem consists of finding a maximum-sized tree that is topologically embedded in each input tree, under label-preserving embeddings. Its variant MCT is less stringent, as it allows the input trees to be arbitrarily refined. Our results are as follows. We show that MCT is -hard to approximate within bound n1−? on rooted trees, where n denotes the size of each input tree; the same approximation lower bound was already known for MAST [J. Jansson, Consensus algorithms for trees and strings, Ph. D. Thesis, Lund University, 2003]. Furthermore, we prove that MCT on two rooted trees is not approximable within bound 2log1−?n, unless all problems in are solvable in quasi-polynomial time; the same result was previously established for MAST on three rooted trees [J. Hein, T. Jiang, L. Wang, K. Zhang, On the complexity of comparing evolutionary trees, Discrete Applied Mathematics 71 (1-3) (1996) 153-169] (note that MAST on two trees is solvable in polynomial time [M.A. Steel, T.J. Warnow, Kaikoura tree theorems: Computing the maximum agreement subtree, Information Processing Letters 48 (2) (1993) 77-82]). Let CMAST, resp. CMCT, denote the complement version of MAST, resp. MCT: CMAST, resp. CMCT, consists of finding a tree that is a feasible solution of MAST, resp. MCT, and whose leaf label set excludes a smallest subset of the input labels. The approximation threshold for CMAST, resp. CMCT, on rooted trees is shown to be the same as the approximation threshold for CMAST, resp. CMCT, on unrooted trees; it was already known that both CMAST and CMCT are approximable within ratio three on rooted and unrooted trees [V. Berry, F. Nicolas, Maximum agreement and compatible supertrees, in: S.C. Sahinalp, S. Muthukrishnan, U. Dogrusoz (Eds.), Proceedings of the 15th Annual Symposium on Combinatorial Pattern Matching, CPM’04, in: LNCS, vol. 3109, Springer-Verlag, 2004, pp. 205-219; G. Ganapathy, T.J. Warnow, Approximating the complement of the maximum compatible subset of leaves of k trees, in: K. Jansen, S. Leonardi, V. V. Vazirani (Eds.), Proceedings of the 5th International Workshop on Approximation Algorithms for Combinatorial Optimization, APPROX’02, in: LNCS, vol. 2462, Springer-Verlag, 2002, pp. 122-134]. The latter results are completed by showing that CMAST is -hard on three rooted trees and that CMCT is -hard on two rooted trees.  相似文献   

8.
We formulate the notion of uniformization of colorings of ladder systems on subsets of trees. We prove that Suslin trees have this property and also Aronszajn trees in the presence of Martin's Axiom. As an application we show that if a tree has this property, then every countable discrete family of subsets of the tree can be separated by a family of pairwise disjoint open sets. Such trees are then normal and hence countably paracompact. As a dual result for special Aronszajn trees we prove that the weak diamond, , implies that no special Aronszajn tree can be countably paracompact.

  相似文献   


9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号