首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the perturbation theory of structured matrices under structured rank one perturbations, with emphasis on matrices that are unitary, orthogonal, or symplectic with respect to an indefinite inner product. The rank one perturbations are not necessarily of arbitrary small size (in the sense of norm). In the case of sesquilinear forms, results on selfadjoint matrices can be applied to unitary matrices by using the Cayley transformation, but in the case of real or complex symmetric or skew-symmetric bilinear forms additional considerations are necessary. For complex symplectic matrices, it turns out that generically (with respect to the perturbations) the behavior of the Jordan form of the perturbed matrix follows the pattern established earlier for unstructured matrices and their unstructured perturbations, provided the specific properties of the Jordan form of complex symplectic matrices are accounted for. For instance, the number of Jordan blocks of fixed odd size corresponding to the eigenvalue 1 or ?1 have to be even. For complex orthogonal matrices, it is shown that the behavior of the Jordan structures corresponding to the original eigenvalues that are not moved by perturbations follows again the pattern established earlier for unstructured matrices, taking into account the specifics of Jordan forms of complex orthogonal matrices. The proofs are based on general results developed in the paper concerning Jordan forms of structured matrices (which include in particular the classes of orthogonal and symplectic matrices) under structured rank one perturbations. These results are presented and proved in the framework of real as well as of complex matrices.  相似文献   

2.
An eigenvalue perturbation theory under rank-one perturbations is developed for classes of real matrices that are symmetric with respect to a non-degenerate bilinear form, or Hamiltonian with respect to a non-degenerate skew-symmetric form. In contrast to the case of complex matrices, the sign characteristic is a crucial feature of matrices in these classes. The behaviour of the sign characteristic under generic rank-one perturbations is analyzed in each of these two classes of matrices. Partial results are presented, but some questions remain open. Applications include boundedness and robust boundedness for solutions of structured systems of linear differential equations with respect to general perturbations as well as with respect to structured rank perturbations of the coefficients.  相似文献   

3.
For selfadjoint matrices in an indefinite inner product, possible canonical forms are identified that arise when the matrix is subjected to a selfadjoint generic rank one perturbation. Genericity is understood in the sense of algebraic geometry. Special attention is paid to the perturbation behavior of the sign characteristic. Typically, under such a perturbation, for every given eigenvalue, the largest Jordan block of the eigenvalue is destroyed and (in case the eigenvalue is real) all other Jordan blocks keep their sign characteristic. The new eigenvalues, i.e. those eigenvalues of the perturbed matrix that are not eigenvalues of the original matrix, are typically simple, and in some cases information is provided about their sign characteristic (if the new eigenvalue is real). The main results are proved by using the well known canonical forms of selfadjoint matrices in an indefinite inner product, a version of the Brunovsky canonical form and on general results concerning rank one perturbations obtained.  相似文献   

4.
Pseudospectra and structured pseudospectra are important tools for the analysis of matrices. Their computation, however, can be very demanding for all but small matrices. A new approach to compute approximations of pseudospectra and structured pseudospectra, based on determining the spectra of many suitably chosen rank‐one or projected rank‐one perturbations of the given matrix is proposed. The choice of rank‐one or projected rank‐one perturbations is inspired by Wilkinson's analysis of eigenvalue sensitivity. Numerical examples illustrate that the proposed approach gives much better insight into the pseudospectra and structured pseudospectra than random or structured random rank‐one perturbations with lower computational burden. The latter approach is presently commonly used for the determination of structured pseudospectra.  相似文献   

5.
It is well known that, when a full rank observable pair (C,A) is slightly perturbed, the new observability indices k′ are majorized by the initial ones k, k?k′. Conversely, any indices k′ majorized by k can be obtained by perturbing (C,A). The aim of this paper is the explicit construction of perturbations of (C,A) which have the desired indices k′ by means of a sequence of uniparametrical versal perturbations. Even more, using versal deformations we refine this construction in such a way that the perturbation has the maximum possible number of zeros and no parameters in the square part.  相似文献   

6.
In a recent paper, Overton and Van Dooren have considered structured indefinite perturbations to a given Hermitian matrix. We extend their results to skew-Hermitian, Hamiltonian and skew-Hamiltonian matrices. As an application, we give a formula for computation of the smallest perturbation with a special structure, which makes a given Hamiltonian matrix own a purely imaginary eigenvalue.  相似文献   

7.
It is interesting that inverse M-matrices are zero-pattern (power) invariant. The main contribution of the present work is that we characterize some structured matrices that are zero-pattern (power) invariant. Consequently, we provide necessary and sufficient conditions for these structured matrices to be inverse M-matrices. In particular, to check if a given circulant or symmetric Toeplitz matrix is an inverse M-matrix, we only need to consider its pattern structure and verify that one of its principal submatrices is an inverse M-matrix.  相似文献   

8.
We derive explicit computable expressions of structured backward errors of approximate eigenelements of structured matrix polynomials including symmetric, skew-symmetric, Hermitian, skew-Hermitian, even and odd polynomials. We determine minimal structured perturbations for which approximate eigenelements are exact eigenelements of the perturbed polynomials. We also analyze structured pseudospectra of a structured matrix polynomial and establish a partial equality between unstructured and structured pseudospectra. Finally, we analyze the effect of structure preserving linearizations of structured matrix polynomials on the structured backward errors of approximate eigenelements and show that structure preserving linearizations which minimize structured condition numbers of eigenvalues also minimize the structured backward errors of approximate eigenelements.  相似文献   

9.
In this paper we present a generalization of the classical bitangential Nevanlinna-Pick theory in which one bounds not the norm of the interpolating functions but their structured singular value This work was motivated by some problems arising in robust control of systems with structured uncertainty. This approach is based on the commutant lifting theory of Sz.-Nagy and Foias (1968) and extends previous work of Bercovici, Foias and Tannenbaum (1990) on structured matrix Nevanlinna-Pick interpolation.This work was supported in part by grants from the National Science Foundation DMS-8811084, ECS-9122106, by the Air Force Office of Scientific Research F49620-94-1-0058DEF and by the Army Research Office DAAL03-91-G-0019, DAAH04-93-G-0332.  相似文献   

10.
In this note, we study the notion of structured pseudospectra. We prove that for Toeplitz, circulant, Hankel and symmetric structures, the structured pseudospectrum equals the unstructured pseudospectrum. We show that this is false for Hermitian and skew-Hermitian structures. We generalize the result to pseudospectra of matrix polynomials. Indeed, we prove that the structured pseudospectrum equals the unstructured pseudospectrum for matrix polynomials with Toeplitz, circulant, Hankel and symmetric structures. We conclude by giving a formula for structured pseudospectra of real matrix polynomials. The particular type of perturbations used for these pseudospectra arise in control theory.  相似文献   

11.
In this paper, we study the normwise perturbation theory of singular linear structured system with index one. The structures under investigation are Toeplitz, circulant, Hankel matrices. We show that the structured condition number is smaller than unstructured condition number. For specific right-hand side, we present the condition number for structured system.  相似文献   

12.
We investigate lower bounds for the eigenvalues of perturbations of matrices. In the footsteps of Weyl and Ipsen & Nadler, we develop approximating matrices whose eigenvalues are lower bounds for the eigenvalues of the perturbed matrix. The number of available eigenvalues and eigenvectors of the original matrix determines how close those approximations can be, and, if the perturbation is of low rank, such bounds are relatively inexpensive to obtain. Moreover, because the process need not be restricted to the eigenvalues of perturbed matrices, lower bounds for eigenvalues of bordered diagonal matrices as well as for singular values of rank-k perturbations and other updates of n×m matrices are given.  相似文献   

13.
For a graph G of order n, the maximum nullity of G is defined to be the largest possible nullity over all real symmetric n×n matrices A whose (i,j)th entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise. Maximum nullity and the related parameter minimum rank of the same set of matrices have been studied extensively. A new parameter, maximum generic nullity, is introduced. Maximum generic nullity provides insight into the structure of the null-space of a matrix realizing maximum nullity of a graph. It is shown that maximum generic nullity is bounded above by edge connectivity and below by vertex connectivity. Results on random graphs are used to show that as n goes to infinity almost all graphs have equal maximum generic nullity, vertex connectivity, edge connectivity, and minimum degree.  相似文献   

14.
Rank one perturbations of selfadjoint operators which are not necessarily semibounded are studied in the present paper. It is proven that such perturbations are uniquely defined, if they are bounded in the sense of forms. We also show that form unbounded rank one perturbations can be uniquely defined if the original operator and the perturbation are homogeneous with respect to a certain one parameter semigroup. The perturbed operator is defined using the extension theory for symmetric operators. The resolvent of the perturbed operator is calculated using Krein's formula. It is proven that every rank one perturbation can be approximated in the operator norm. We prove that some form unbounded perturbations can be approximated in the strong resolvent sense without renormalization of the coupling constant only if the original operator is not semibounded. The present approach is applied to study first derivative and Dirac operators with point interaction, in one dimension.  相似文献   

15.
We use a recent result concerning the eigenvalues of a generic (non-Hermitian) complex perturbation of a bounded Hermitian sequence of matrices to prove that the asymptotic spectrum of the product of Toeplitz sequences, whose symbols have a real-valued essentially bounded product h, is described by the function h in the “Szegö way”. Then, using Mergelyan’s theorem, we extend the result to the more general case where h belongs to the Tilli class. The same technique gives us the analogous result for sequences belonging to the algebra generated by Toeplitz sequences, if the symbols associated with the sequences are bounded and the global symbol h belongs to the Tilli class. A generalization to the case of multilevel matrix-valued symbols and a study of the case of Laurent polynomials not necessarily belonging to the Tilli class are also given.  相似文献   

16.
We study the eigenvalues of a matrix A perturbed by a few special low-rank matrices. The perturbation is constructed from certain basis vectors of an invariant subspace of A, such as eigenvectors, Jordan vectors, or Schur vectors. We show that most of the eigenvalues of the low-rank perturbed matrix stayed unchanged from the eigenvalues of A; the perturbation can only change the eigenvalues of A that are related to the invariant subspace. Existing results mostly studied using eigenvectors with full column rank for perturbations, we generalize the results to more general settings. Applications of our results to a few interesting problems including the Google’s second eigenvalue problem are presented.  相似文献   

17.
18.
We study asymptotics of the Itzykson-Zuber integrals in the scaling when one of the matrices has a small rank compared to the full rank. We show that the result is basically the same as in the case when one of the matrices has a fixed rank. In this way we extend the recent results of Guionnet and Maïda who showed that for the fixed rank scaling, the Itzykson-Zuber integral is given in terms of the Voiculescu's R-transform of the full rank matrix.  相似文献   

19.
Numerical algorithms with complexityO(n 2) operations are proposed for solving matrix Nehari and Nehari-Takagi problems withn interpolation points. The algorithms are based on explicit formulas for the solutions and on theorems about cascade decomposition of rational matrix function given in a state space form. The method suggests also fast algorithms for LDU factorizations of structured matrices. The numerical behavior of the designed algorithms is studied for a wide set of examples.  相似文献   

20.
In this paper we describe how to compute the eigenvalues of a unitary rank structured matrix in two steps. First we perform a reduction of the given matrix into Hessenberg form, next we compute the eigenvalues of this resulting Hessenberg matrix via an implicit QR-algorithm. Along the way, we explain how the knowledge of a certain ‘shift’ correction term to the structure can be used to speed up the QR-algorithm for unitary Hessenberg matrices, and how this observation was implicitly used in a paper due to William B. Gragg. We also treat an analogue of this observation in the Hermitian tridiagonal case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号