首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
For the large sparse block two-by-two real nonsingular matrices, we establish a general framework of practical and efficient structured preconditioners through matrix transformation and matrix approximations. For the specific versions such as modified block Jacobi-type, modified block Gauss-Seidel-type, and modified block unsymmetric (symmetric) Gauss-Seidel-type preconditioners, we precisely describe their concrete expressions and deliberately analyze eigenvalue distributions and positive definiteness of the preconditioned matrices. Also, we show that when these structured preconditioners are employed to precondition the Krylov subspace methods such as GMRES and restarted GMRES, fast and effective iteration solvers can be obtained for the large sparse systems of linear equations with block two-by-two coefficient matrices. In particular, these structured preconditioners can lead to efficient and high-quality preconditioning matrices for some typical matrices from the real-world applications.

  相似文献   


3.
Chen  Min-Hong  Wu  Qing-Biao 《Numerical Algorithms》2019,80(2):355-375
Numerical Algorithms - In this study, an efficient iterative method is given to solve large sparse nonlinear systems with block two-by-two complex symmetric Jacobian matrices. Based on the...  相似文献   

4.
李天怡  陈芳 《计算数学》2021,43(1):110-117
本文将QHSS迭代方法运用于求解一类分块二阶线性方程组. 通过适当地放宽QHSS迭代方法的收敛性条件,我们给出了用QHSS迭代方法求解一类分块二阶线性方程组的具体迭代格式,并证明了当系数矩阵中的(1,1)块对称半正定时该QHSS迭代方法的收敛性.我们还用数值实验验证了QHSS迭代方法的可行性和有效性.  相似文献   

5.
For a class of block two-by-two systems of linear equations with certain skew-Hamiltonian coefficient matrices, we construct additive block diagonal preconditioning matrices and discuss the eigen-properties of the corresponding preconditioned matrices. The additive block diagonal preconditioners can be employed to accelerate the convergence rates of Krylov subspace iteration methods such as MINRES and GMRES. Numerical experiments show that MINRES preconditioned by the exact and the inexact additive block diagonal preconditioners are effective, robust and scalable solvers for the block two-by-two linear systems arising from the Galerkin finite-element discretizations of a class of distributed control problems.  相似文献   

6.
Based on the PMHSS preconditioning matrix, we construct a class of rotated block triangular preconditioners for block two-by-two matrices of real square blocks, and analyze the eigen-properties of the corresponding preconditioned matrices. Numerical experiments show that these rotated block triangular preconditioners can be competitive to and even more efficient than the PMHSS pre-conditioner when they are used to accelerate Krylov subspace iteration methods for solving block two-by-two linear systems with coefficient matrices possibly of nonsymmetric sub-blocks.  相似文献   

7.
The first infinite families of symmetric designs were obtained from finite projective geometries, Hadamard matrices, and difference sets. In this paper we describe two general methods of constructing symmetric designs that give rise to the parameters of all other known infinite families of symmetric designs. The method of global decomposition produces an incidence matrix of a symmetric design as a block matrix with each block being a zero matrix or an incidence matrix of a smaller symmetric design. The method of local decomposition represents incidence matrices of a residual and a derived design of a symmetric design as block matrices with each block being a zero matrix or an incidence matrix of a smaller residual or derived design, respectively.  相似文献   

8.
In this paper, the optimal iteration parameters of the symmetric successive overrelaxation (SSOR) method for a class of block two-by-two linear systems are obtained, which result in optimal convergence factor. An accelerated variant of the SSOR (ASSOR) method is presented, which significantly improves the convergence rate of the SSOR method. Furthermore, a more practical way to choose iteration parameters for the ASSOR method has also been proposed. Numerical experiments demonstrate the efficiency of the SSOR and ASSOR methods for solving a class of block two-by-two linear systems with the optimal parameters.  相似文献   

9.
The development of the Lanczos algorithm for finding eigenvalues of large sparse symmetric matrices was followed by that of block forms of the algorithm. In this paper, similar extensions are carried out for a relative of the Lanczos method, the conjugate gradient algorithm. The resulting block algorithms are useful for simultaneously solving multiple linear systems or for solving a single linear system in which the matrix has several separated eigenvalues or is not easily accessed on a computer. We develop a block biconjugate gradient algorithm for general matrices, and develop block conjugate gradient, minimum residual, and minimum error algorithms for symmetric semidefinite matrices. Bounds on the rate of convergence of the block conjugate gradient algorithm are presented, and issues related to computational implementation are discussed. Variants of the block conjugate gradient algorithm applicable to symmetric indefinite matrices are also developed.  相似文献   

10.
This paper deals with fast and reliable numerical solution methods for the incompressible non-Newtonian Navier-Stokes equations. To handle the nonlinearity of the governing equations, the Picard and Newton methods are used to linearize these coupled partial differential equations. For space discretization we use the finite element method and utilize the two-by-two block structure of the matrices in the arising algebraic systems of equations. The Krylov subspace iterative methods are chosen to solve the linearized discrete systems and the development of computationally and numerically efficient preconditioners for the two-by-two block matrices is the main concern in this paper. In non-Newtonian flows, the viscosity is not constant and its variation is an important factor that affects the performance of some already known preconditioning techniques. In this paper we examine the performance of several preconditioners for variable viscosity applications, and improve them further to be robust with respect to variations in viscosity.  相似文献   

11.
For solving a class of complex symmetric linear system, we first transform the system into a block two-by-two real formulation and construct a symmetric block triangular splitting (SBTS) iteration method based on two splittings. Then, eigenvalues of iterative matrix are calculated, convergence conditions with relaxation parameter are derived, and two optimal parameters are obtained. Besides, we present the optimal convergence factor and test two numerical examples to confirm theoretical results and to verify the high performances of SBTS iteration method compared with two classical methods.  相似文献   

12.
Using the equivalent block two-by-two real linear systems and relaxing technique, we establish a new block preconditioner for a class of complex symmetric indefinite linear systems. The new preconditioner is much closer to the original block two-by-two coefficient matrix than the Hermitian and skew-Hermitian splitting (HSS) preconditioner. We analyze the spectral properties of the new preconditioned matrix, discuss the eigenvalue distribution and derive an upper bound for the degree of its minimal polynomial. Finally, some numerical examples are provided to show the effectiveness and robustness of our proposed preconditioner.  相似文献   

13.
Numerical Algorithms - In this paper, a class of additive block triangular preconditioners are constructed for solving block two-by-two linear systems with symmetric positive (semi-)definite...  相似文献   

14.
For the iterative solution of linear systems of equations arising from finite element discretization of elliptic problems there exist well-established techniques to construct numerically efficient and computationally optimal preconditioners. Among those, most often preferred choices are Multigrid methods (geometric or algebraic), Algebraic MultiLevel Iteration (AMLI) methods, Domain Decomposition techniques.In this work, the method in focus is AMLI. We extend its construction and the underlying theory over to systems arising from discretizations of parabolic problems, using non-conforming finite element methods (FEM). The AMLI method is based on an approximated block two-by-two factorization of the original system matrix. A key ingredient for the efficiency of the AMLI preconditioners is the quality of the utilized block two-by-two splitting, quantified by the so-called Cauchy-Bunyakowski-Schwarz (CBS) constant, which measures the abstract angle between the two subspaces, associated with the two-by-two block splitting of the matrix.The particular choice of space discretization for the parabolic equations, used in this paper, is Crouzeix-Raviart non-conforming elements on triangular meshes. We describe a suitable splitting of the so-arising matrices and derive estimates for the associated CBS constant. The estimates are uniform with respect to discretization parameters in space and time as well as with respect to coefficient and mesh anisotropy, thus providing robustness of the method.  相似文献   

15.
We derive necessary and sufficient conditions for guaranteeing the nonsingularity of a block two-by-two matrix by making use of the singular value decompositions and the Moore–Penrose pseudoinverses of the matrix blocks. These conditions are complete, and much weaker and simpler than those given by Decker and Keller [D.W. Decker, H.B. Keller, Multiple limit point bifurcation, J. Math. Anal. Appl. 75 (1980) 417–430], and may be more easily examined than those given by Bai [Z.-Z. Bai, Eigenvalue estimates for saddle point matrices of Hermitian and indefinite leading blocks, J. Comput. Appl. Math. 237 (2013) 295–306] from the computational viewpoint. We also derive general formulas for the rank of the block two-by-two matrix by utilizing either the unitarily compressed or the orthogonally projected sub-matrices.  相似文献   

16.
廖丽丹  张国凤 《计算数学》2022,44(4):545-560
针对一类由时谐抛物方程约束的最优控制问题导出的分块$2\times2$复线性方程组,进一步研究了三类有效的块预处理子,推导了这三类预处理子间的关系,结论表明三个预处理矩阵的特征值由同一个矩阵确定.通过分析预处理矩阵的谱性质,获得了有效的参数选择策略,可以进一步改进和优化现有结果,同时获得了预处理矩阵的精确特征值分布,并证明了此结果是目前文献中最优结果.最后,给出实例,不仅验证了优化的预处理子和迭代方法的有效性,而且说明了理论结果是令人信服的.  相似文献   

17.
We propose an algorithm for solving the inverse eigenvalue problem for real symmetric block Toeplitz matrices with symmetric Toeplitz blocks. It is based upon an algorithm which has been used before by others to solve the inverse eigenvalue problem for general real symmetric matrices and also for Toeplitz matrices. First we expose the structure of the eigenvectors of the so-called generalized centrosymmetric matrices. Then we explore the properties of the eigenvectors to derive an efficient algorithm that is able to deliver a matrix with the required structure and spectrum. We have implemented our ideas in a Matlab code. Numerical results produced with this code are included.  相似文献   

18.
In this work we analyse a method to construct numerically efficient and computationally cheap sparse approximations of some of the matrix blocks arising in the block-factorized preconditioners for matrices with a two-by-two block structure. The matrices arise from finite element discretizations of partial differential equations. We consider scalar elliptic problems, however the approach is appropriate also for other types of problems such as parabolic problems or systems of equations. The technique is applicable for both selfadjoint and non-selfadjoint problems, in two as well as in three space dimensions. We analyse in detail the two-dimensional case and provide extensive numerical evidence for the efficiency of the proposed matrix approximations, both serial and parallel. Two- and three-dimensional tests are included.  相似文献   

19.
The generalized qd algorithm for block band matrices is an extension of the block qd algorithm applied to a block tridiagonal matrix. This algorithm is applied to a positive definite symmetric block band matrix. The result concerning the behavior of the eigenvalues of the first and the last diagonal block of the matrix containing the entries q (k) which was obtained in the tridiagonal case is still valid for positive definite symmetric block band matrices. The eigenvalues of the first block constitute strictly increasing sequences and those of the last block constitute strictly decreasing sequences. The theorem of convergence, given in Draux and Sadik (Appl Numer Math 60:1300?C1308, 2010), also remains valid in this more general case.  相似文献   

20.
In this paper, we will present the block splitting iterative methods with general weighting matrices for solving linear systems of algebraic equations Ax=bAx=b when the coefficient matrix A is symmetric positive definite of block form, and establish the convergence theories with respect to the general weighting matrices but special splittings. Finally, a numerical example shows the advantage of this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号