首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 65 毫秒
1.
A fast method for enclosing all eigenvalues in generalized eigenvalue problems Ax=λBx is proposed. Firstly a theorem for enclosing all eigenvalues, which is applicable even if A is not Hermitian and/or B is not Hermitian positive definite, is presented. Next a theorem for accelerating the enclosure is presented. The proposed method is established based on these theorems. Numerical examples show the performance and property of the proposed method. As an application of the proposed method, an efficient method for enclosing all eigenvalues in polynomial eigenvalue problems is also sketched.  相似文献   

2.
Fast algorithms for enclosing minimal 2-norm solutions in underdetermined systems are proposed. For developing these algorithms, theory for computing error bounds for numerical solutions is established. Moreover techniques for accelerating the enclosure and obtaining smaller error bounds are introduced. Numerical results show the properties of the proposed algorithms.  相似文献   

3.
On the modification of an eigenvalue problem that preserves an eigenspace   总被引:1,自引:0,他引:1  
Eigenvalue problems arise in many application areas ranging from computational fluid dynamics to information retrieval. In these fields we are often interested in only a few eigenvalues and corresponding eigenvectors of a sparse matrix. In this paper, we comment on the modifications of the eigenvalue problem that can simplify the computation of those eigenpairs. These transformations allow us to avoid difficulties associated with non-Hermitian eigenvalue problems, such as the lack of reliable non-Hermitian eigenvalue solvers, by mapping them into generalized Hermitian eigenvalue problems. Also, they allow us to expose and explore parallelism. They require knowledge of a selected eigenvalue and preserve its eigenspace. The positive definiteness of the Hermitian part is inherited by the matrices in the generalized Hermitian eigenvalue problem. The position of the selected eigenspace in the ordering of the eigenvalues is also preserved under certain conditions. The effect of using approximate eigenvalues in the transformation is analyzed and numerical experiments are presented.  相似文献   

4.
In this paper we present an algorithm for approximating the range of the real eigenvalues of interval matrices. Such matrices could be used to model real-life problems, where data sets suffer from bounded variations such as uncertainties (e.g. tolerances on parameters, measurement errors), or to study problems for given states.The algorithm that we propose is a subdivision algorithm that exploits sophisticated techniques from interval analysis. The quality of the computed approximation and the running time of the algorithm depend on a given input accuracy. We also present an efficient C++ implementation and illustrate its efficiency on various data sets. In most of the cases we manage to compute efficiently the exact boundary points (limited by floating point representation).  相似文献   

5.
This paper is concerned with the problem of the best approximation for a given matrix pencil under a given spectral constraint and a submatrix pencil constraint. Such a problem arises in structural dynamic model updating. By using the Moore–Penrose generalized inverse and the singular value decomposition (SVD) matrices, the solvability condition and the expression for the solution of the problem are presented. A numerical algorithm for solving the problem is developed.  相似文献   

6.
A partially described inverse eigenvalue problem and an associated optimal approximation problem for generalized K-centrohermitian matrices are considered. It is shown under which conditions the inverse eigenproblem has a solution. An expression of its general solution is given. In case a solution of the inverse eigenproblem exists, the optimal approximation problem can be solved. The formula of its unique solution is given.  相似文献   

7.
The implementation of implicit Runge-Kutta methods requires the solution of large sets of nonlinear equations. It is known that on serial machines these costs can be reduced if the stability function of ans-stage method has only ans-fold real pole. Here these so-called singly-implicit Runge-Kutta methods (SIRKs) are constructed utilizing a recent result on eigenvalue assignment by state feedback and a new tridiagonalization, which preserves the entries required by theW-transformation. These two algorithms in conjunction with an unconstrained minimization allow the numerical treatment of a difficult inverse eigenvalue problem. In particular we compute an 8-stage SIRK which is of order 8 andB-stable. This solves a problem posed by Hairer and Wanner a decade ago. Furthermore, we finds-stageB-stable SIRKs (s=6,8) of orders, which are evenL-stable.  相似文献   

8.
This paper proposes new iterative methods for the efficient computation of the smallest eigenvalue of symmetric nonlinear matrix eigenvalue problems of large order with a monotone dependence on the spectral parameter. Monotone nonlinear eigenvalue problems for differential equations have important applications in mechanics and physics. The discretization of these eigenvalue problems leads to nonlinear eigenvalue problems with very large sparse ill-conditioned matrices monotonically depending on the spectral parameter. To compute the smallest eigenvalue of large-scale matrix nonlinear eigenvalue problems, we suggest preconditioned iterative methods: preconditioned simple iteration method, preconditioned steepest descent method, and preconditioned conjugate gradient method. These methods use only matrix-vector multiplications, preconditioner-vector multiplications, linear operations with vectors, and inner products of vectors. We investigate the convergence and derive grid-independent error estimates for these methods. Numerical experiments demonstrate the practical effectiveness of the proposed methods for a model problem.  相似文献   

9.
The nonnegative inverse eigenvalue problem is that given a family of complex numbers λ={λ1,…,λn}, find a nonnegative matrix of order n with spectrum λ. This problem is difficult and remains unsolved partially. In this paper, we focus on its generalization that the reconstructed nonnegative matrices should have some prescribed entries. It is easy to see that this new problem will come back to the common nonnegative inverse eigenvalue problem if there is no constraint of the locations of entries. A numerical isospectral flow method which is developed by hybridizing the optimization theory and steepest descent method is used to study the reconstruction. Moreover, an error estimate of the numerical iteration for ordinary differential equations on the matrix manifold is presented. After that, a numerical method for the nonnegative symmetric inverse eigenvalue problem with prescribed entries and its error estimate are considered. Finally, the approaches are verified by the numerical test results.  相似文献   

10.
In this paper, we consider shifted tridiagonal matrices. We prove that the standard algorithm to compute the LU factorization in this situation is mixed forward-backward stable and, therefore, componentwise forward stable. Moreover, we give a formula to compute the corresponding condition number in O(n) flops. This research has been partially supported by Dirección General de Investigación (Ministerio de Ciencia y Tecnología) of Spain through grants BFM2003-06335-C03-02 and MTM2006-06671 as well as by the Postdoctoral Fellowship EX2004-0658 provided by Ministerio de Educación y Ciencia of Spain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号