首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most branch-and-bound algorithms in global optimization depend on convex underestimators to calculate lower bounds of a minimization objective function. The $\alpha $ BB methodology produces such underestimators for sufficiently smooth functions by analyzing interval Hessian approximations. Several methods to rigorously determine the $\alpha $ BB parameters have been proposed, varying in tightness and computational complexity. We present new polynomial-time methods and compare their properties to existing approaches. The new methods are based on classical eigenvalue bounds from linear algebra and a more recent result on interval matrices. We show how parameters can be optimized with respect to the average underestimation error, in addition to the maximum error commonly used in $\alpha $ BB methods. Numerical comparisons are made, based on test functions and a set of randomly generated interval Hessians. The paper shows the relative strengths of the methods, and proves exact results where one method dominates another.  相似文献   

2.
It is well known that every scalar convex function is locally Lipschitz on the interior of its domain in finite dimensional spaces. The aim of this paper is to extend this result for both vector functions and set-valued mappings acting between infinite dimensional spaces with an order generated by a proper convex cone C. Under the additional assumption that the ordering cone C is normal, we prove that a locally C-bounded C-convex vector function is Lipschitz on the interior of its domain by two different ways. Moreover, we derive necessary conditions for Pareto minimal points of vector-valued optimization problems where the objective function is C-convex and C-bounded. Corresponding results are derived for set-valued optimization problems.  相似文献   

3.
We show that the exact worst-case performance of fixed-step first-order methods for unconstrained optimization of smooth (possibly strongly) convex functions can be obtained by solving convex programs. Finding the worst-case performance of a black-box first-order method is formulated as an optimization problem over a set of smooth (strongly) convex functions and initial conditions. We develop closed-form necessary and sufficient conditions for smooth (strongly) convex interpolation, which provide a finite representation for those functions. This allows us to reformulate the worst-case performance estimation problem as an equivalent finite dimension-independent semidefinite optimization problem, whose exact solution can be recovered up to numerical precision. Optimal solutions to this performance estimation problem provide both worst-case performance bounds and explicit functions matching them, as our smooth (strongly) convex interpolation procedure is constructive. Our works build on those of Drori and Teboulle (Math Program 145(1–2):451–482, 2014) who introduced and solved relaxations of the performance estimation problem for smooth convex functions. We apply our approach to different fixed-step first-order methods with several performance criteria, including objective function accuracy and gradient norm. We conjecture several numerically supported worst-case bounds on the performance of the fixed-step gradient, fast gradient and optimized gradient methods, both in the smooth convex and the smooth strongly convex cases, and deduce tight estimates of the optimal step size for the gradient method.  相似文献   

4.
We analyze the convergence rate of the alternating direction method of multipliers (ADMM) for minimizing the sum of two or more nonsmooth convex separable functions subject to linear constraints. Previous analysis of the ADMM typically assumes that the objective function is the sum of only two convex functions defined on two separable blocks of variables even though the algorithm works well in numerical experiments for three or more blocks. Moreover, there has been no rate of convergence analysis for the ADMM without strong convexity in the objective function. In this paper we establish the global R-linear convergence of the ADMM for minimizing the sum of any number of convex separable functions, assuming that a certain error bound condition holds true and the dual stepsize is sufficiently small. Such an error bound condition is satisfied for example when the feasible set is a compact polyhedron and the objective function consists of a smooth strictly convex function composed with a linear mapping, and a nonsmooth \(\ell _1\) regularizer. This result implies the linear convergence of the ADMM for contemporary applications such as LASSO without assuming strong convexity of the objective function.  相似文献   

5.
In this paper, we prove new complexity bounds for methods of convex optimization based only on computation of the function value. The search directions of our schemes are normally distributed random Gaussian vectors. It appears that such methods usually need at most n times more iterations than the standard gradient methods, where n is the dimension of the space of variables. This conclusion is true for both nonsmooth and smooth problems. For the latter class, we present also an accelerated scheme with the expected rate of convergence \(O\Big ({n^2 \over k^2}\Big )\), where k is the iteration counter. For stochastic optimization, we propose a zero-order scheme and justify its expected rate of convergence \(O\Big ({n \over k^{1/2}}\Big )\). We give also some bounds for the rate of convergence of the random gradient-free methods to stationary points of nonconvex functions, for both smooth and nonsmooth cases. Our theoretical results are supported by preliminary computational experiments.  相似文献   

6.
This paper shows that error bounds can be used as effective tools for deriving complexity results for first-order descent methods in convex minimization. In a first stage, this objective led us to revisit the interplay between error bounds and the Kurdyka-?ojasiewicz (KL) inequality. One can show the equivalence between the two concepts for convex functions having a moderately flat profile near the set of minimizers (as those of functions with Hölderian growth). A counterexample shows that the equivalence is no longer true for extremely flat functions. This fact reveals the relevance of an approach based on KL inequality. In a second stage, we show how KL inequalities can in turn be employed to compute new complexity bounds for a wealth of descent methods for convex problems. Our approach is completely original and makes use of a one-dimensional worst-case proximal sequence in the spirit of the famous majorant method of Kantorovich. Our result applies to a very simple abstract scheme that covers a wide class of descent methods. As a byproduct of our study, we also provide new results for the globalization of KL inequalities in the convex framework. Our main results inaugurate a simple method: derive an error bound, compute the desingularizing function whenever possible, identify essential constants in the descent method and finally compute the complexity using the one-dimensional worst case proximal sequence. Our method is illustrated through projection methods for feasibility problems, and through the famous iterative shrinkage thresholding algorithm (ISTA), for which we show that the complexity bound is of the form \(O(q^{k})\) where the constituents of the bound only depend on error bound constants obtained for an arbitrary least squares objective with \(\ell ^1\) regularization.  相似文献   

7.
A customized Douglas-Rachford splitting method (DRSM) was recently proposed to solve two-block separable convex optimization problems with linear constraints and simple abstract constraints. The algorithm has advantage over the well-known alternating direction method of multipliers (ADMM), the dual application of DRSM to the two-block convex minimization problem, in the sense that the subproblems can have larger opportunity of possessing closed-form solutions since they are unconstrained. In this paper, we further study along this way by considering the primal application of DRSM for the general case m≥3, i.e., we consider the multi-block separable convex minimization problem with linear constraints where the objective function is separable into m individual convex functions without coupled variables. The resulting method fully exploits the separable structure and enjoys decoupled subproblems which can be solved simultaneously. Both the exact and inexact versions of the new method are presented in a unified framework. Under mild conditions, we manage to prove the global convergence of the algorithm. Preliminary numerical experiments for extracting the background from corrupted surveillance video verify the encouraging efficiency of the new algorithm.  相似文献   

8.
In this paper, we study the Kurdyka–?ojasiewicz (KL) exponent, an important quantity for analyzing the convergence rate of first-order methods. Specifically, we develop various calculus rules to deduce the KL exponent of new (possibly nonconvex and nonsmooth) functions formed from functions with known KL exponents. In addition, we show that the well-studied Luo–Tseng error bound together with a mild assumption on the separation of stationary values implies that the KL exponent is \(\frac{1}{2}\). The Luo–Tseng error bound is known to hold for a large class of concrete structured optimization problems, and thus we deduce the KL exponent of a large class of functions whose exponents were previously unknown. Building upon this and the calculus rules, we are then able to show that for many convex or nonconvex optimization models for applications such as sparse recovery, their objective function’s KL exponent is \(\frac{1}{2}\). This includes the least squares problem with smoothly clipped absolute deviation regularization or minimax concave penalty regularization and the logistic regression problem with \(\ell _1\) regularization. Since many existing local convergence rate analysis for first-order methods in the nonconvex scenario relies on the KL exponent, our results enable us to obtain explicit convergence rate for various first-order methods when they are applied to a large variety of practical optimization models. Finally, we further illustrate how our results can be applied to establishing local linear convergence of the proximal gradient algorithm and the inertial proximal algorithm with constant step sizes for some specific models that arise in sparse recovery.  相似文献   

9.
In this paper we propose a variant of the random coordinate descent method for solving linearly constrained convex optimization problems with composite objective functions. If the smooth part of the objective function has Lipschitz continuous gradient, then we prove that our method obtains an ?-optimal solution in $\mathcal{O}(n^{2}/\epsilon)$ iterations, where n is the number of blocks. For the class of problems with cheap coordinate derivatives we show that the new method is faster than methods based on full-gradient information. Analysis for the rate of convergence in probability is also provided. For strongly convex functions our method converges linearly. Extensive numerical tests confirm that on very large problems, our method is much more numerically efficient than methods based on full gradient information.  相似文献   

10.
We derive bounds on the expectation of a class of periodic functions using the total variations of higher-order derivatives of the underlying probability density function. These bounds are a strict improvement over those of Romeijnders et al. (Math Program 157:3–46, 2016b), and we use them to derive error bounds for convex approximations of simple integer recourse models. In fact, we obtain a hierarchy of error bounds that become tighter if the total variations of additional higher-order derivatives are taken into account. Moreover, each error bound decreases if these total variations become smaller. The improved bounds may be used to derive tighter error bounds for convex approximations of more general recourse models involving integer decision variables.  相似文献   

11.
In this paper, we present primal-dual interior-point methods for convex quadratic optimization based on a finite barrier, which has been investigated earlier for the case of linear optimization by Bai et al. (SIAM J Optim 13(3):766–782, 2003). By means of the feature of the finite kernel function, we study the complexity analysis of primal-dual interior-point methods based on the finite barrier and derive the iteration bounds that match the currently best known iteration bounds for large- and small-update methods, namely, $O(\sqrt{n}\log{n}\log{\frac{n}{\varepsilon}})$ and $O(\sqrt{n}\log{\frac{n}{\varepsilon}})$ , respectively, which are as good as the linear optimization analogue. Numerical tests demonstrate the behavior of the algorithms with different parameters.  相似文献   

12.
In this paper, we consider the problem of minimizing the sum of two convex functions subject to linear linking constraints. The classical alternating direction type methods usually assume that the two convex functions have relatively easy proximal mappings. However, many problems arising from statistics, image processing and other fields have the structure that while one of the two functions has an easy proximal mapping, the other function is smoothly convex but does not have an easy proximal mapping. Therefore, the classical alternating direction methods cannot be applied. To deal with the difficulty, we propose in this paper an alternating direction method based on extragradients. Under the assumption that the smooth function has a Lipschitz continuous gradient, we prove that the proposed method returns an \(\epsilon \)-optimal solution within \(O(1/\epsilon )\) iterations. We apply the proposed method to solve a new statistical model called fused logistic regression. Our numerical experiments show that the proposed method performs very well when solving the test problems. We also test the performance of the proposed method through solving the lasso problem arising from statistics and compare the result with several existing efficient solvers for this problem; the results are very encouraging.  相似文献   

13.
In this paper, we consider adjustable robust versions of convex optimization problems with uncertain constraints and objectives and show that under fairly general assumptions, a static robust solution provides a good approximation for these adjustable robust problems. An adjustable robust optimization problem is usually intractable since it requires to compute a solution for all possible realizations of uncertain parameters, while an optimal static solution can be computed efficiently in most cases if the corresponding deterministic problem is tractable. The performance of the optimal static robust solution is related to a fundamental geometric property, namely, the symmetry of the uncertainty set. Our work allows for the constraint and objective function coefficients to be uncertain and for the constraints and objective functions to be convex, thereby providing significant extensions of the results in Bertsimas and Goyal (Math Oper Res 35:284–305, 2010) and Bertsimas et al. (Math Oper Res 36: 24–54, 2011b) where only linear objective and linear constraints were considered. The models in this paper encompass a wide variety of problems in revenue management, resource allocation under uncertainty, scheduling problems with uncertain processing times, semidefinite optimization among many others. To the best of our knowledge, these are the first approximation bounds for adjustable robust convex optimization problems in such generality.  相似文献   

14.
Greedy algorithms which use only function evaluations are applied to convex optimization in a general Banach space \(X\). Along with algorithms that use exact evaluations, algorithms with approximate evaluations are treated. A priori upper bounds for the convergence rate of the proposed algorithms are given. These bounds depend on the smoothness of the objective function and the sparsity or compressibility (with respect to a given dictionary) of a point in \(X\) where the minimum is attained.  相似文献   

15.
Error bounds, which refer to inequalities that bound the distance of vectors in a test set to a given set by a residual function, have proven to be extremely useful in analyzing the convergence rates of a host of iterative methods for solving optimization problems. In this paper, we present a new framework for establishing error bounds for a class of structured convex optimization problems, in which the objective function is the sum of a smooth convex function and a general closed proper convex function. Such a class encapsulates not only fairly general constrained minimization problems but also various regularized loss minimization formulations in machine learning, signal processing, and statistics. Using our framework, we show that a number of existing error bound results can be recovered in a unified and transparent manner. To further demonstrate the power of our framework, we apply it to a class of nuclear-norm regularized loss minimization problems and establish a new error bound for this class under a strict complementarity-type regularity condition. We then complement this result by constructing an example to show that the said error bound could fail to hold without the regularity condition. We believe that our approach will find further applications in the study of error bounds for structured convex optimization problems.  相似文献   

16.
A general class of non-monotone line search algorithms has been proposed by Sachs and Sachs (Control Cybern 40:1059–1075, 2011) for smooth unconstrained optimization, generalizing various non-monotone step size rules such as the modified Armijo rule of Zhang and Hager (SIAM J Optim 14:1043–1056, 2004). In this paper, the worst-case complexity of this class of non-monotone algorithms is studied. The analysis is carried out in the context of non-convex, convex and strongly convex objectives with Lipschitz continuous gradients. Despite de nonmonotonicity in the decrease of function values, the complexity bounds obtained agree in order with the bounds already established for monotone algorithms.  相似文献   

17.
Our work considers the optimization of the sum of a non-smooth convex function and a finite family of composite convex functions, each one of which is composed of a convex function and a bounded linear operator. This type of problem is associated with many interesting challenges encountered in the image restoration and image reconstruction fields. We developed a splitting primal-dual proximity algorithm to solve this problem. Furthermore, we propose a preconditioned method, of which the iterative parameters are obtained without the need to know some particular operator norm in advance. Theoretical convergence theorems are presented. We then apply the proposed methods to solve a total variation regularization model, in which the L2 data error function is added to the L1 data error function. The main advantageous feature of this model is its capability to combine different loss functions. The numerical results obtained for computed tomography (CT) image reconstruction demonstrated the ability of the proposed algorithm to reconstruct an image with few and sparse projection views while maintaining the image quality.  相似文献   

18.
In this paper, we study nonlinear optimization problems involving eigenvalues of symmetric matrices. One of the difficulties in solving these problems is that the eigenvalue functions are not differentiable when the multiplicity of the function is not one. We apply the \({\mathcal {U}}\)-Lagrangian theory to analyze the largest eigenvalue function of a convex matrix-valued mapping which extends the corresponding results for linear mapping in the literature. We also provides the formula of first-and second-order derivatives of the \({\mathcal {U}}\)-Lagrangian under mild assumptions. These theoretical results provide us new second-order information about the largest eigenvalue function along a suitable smooth manifold, and leads to a new algorithmic framework for analyzing the underlying optimization problem.  相似文献   

19.
In this paper, we present a new model-based trust-region derivative-free optimization algorithm which can handle nonlinear equality constraints by applying a sequential quadratic programming (SQP) approach. The SQP methodology is one of the best known and most efficient frameworks to solve equality-constrained optimization problems in gradient-based optimization [see e.g. Lalee et al. (SIAM J Optim 8:682–706, 1998), Schittkowski (Optim Lett 5:283–296, 2011), Schittkowski and Yuan (Wiley encyclopedia of operations research and management science, Wiley, New York, 2010)]. Our derivative-free optimization (DFO) algorithm constructs local polynomial interpolation-based models of the objective and constraint functions and computes steps by solving QP sub-problems inside a region using the standard trust-region methodology. As it is crucial for such model-based methods to maintain a good geometry of the set of interpolation points, our algorithm exploits a self-correcting property of the interpolation set geometry. To deal with the trust-region constraint which is intrinsic to the approach of self-correcting geometry, the method of Byrd and Omojokun is applied. Moreover, we will show how the implementation of such a method can be enhanced to outperform well-known DFO packages on smooth equality-constrained optimization problems. Numerical experiments are carried out on a set of test problems from the CUTEst library and on a simulation-based engineering design problem.  相似文献   

20.
We study the convergence rate of the proximal-gradient homotopy algorithm applied to norm-regularized linear least squares problems, for a general class of norms. The homotopy algorithm reduces the regularization parameter in a series of steps, and uses a proximal-gradient algorithm to solve the problem at each step. Proximal-gradient algorithm has a linear rate of convergence given that the objective function is strongly convex, and the gradient of the smooth component of the objective function is Lipschitz continuous. In many applications, the objective function in this type of problem is not strongly convex, especially when the problem is high-dimensional and regularizers are chosen that induce sparsity or low-dimensionality. We show that if the linear sampling matrix satisfies certain assumptions and the regularizing norm is decomposable, proximal-gradient homotopy algorithm converges with a linear rate even though the objective function is not strongly convex. Our result generalizes results on the linear convergence of homotopy algorithm for \(\ell _1\)-regularized least squares problems. Numerical experiments are presented that support the theoretical convergence rate analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号