首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
关于广义线性模型拟似然估计弱相合性的几个问题   总被引:2,自引:0,他引:2  
张三国  廖源 《中国科学A辑》2007,37(11):1368-1376
基于响应变量一维时广义线性模型$\E(\,y\,|X)= \mu(X’\beta)$的拟似然方程$\sum_{i=1}^n X_i(y_i-\mu(X_i’\beta))=0$, 研究了其拟似然估计的弱相合性及其他性质. 在误差$\{e_i=Y_i-\mu(X_i’\beta_0),1\leqslant i\leqslant n\}$不相关及其他条件下, 证明了 $\hat{\beta}_n-\beta_0=O_p(\underline{\lambda}_n^{-1/2})$, 其中 $\hat{\beta}_n$为上述拟似然方程的一个解, β0 为参数 β的真值, $\underline{\lambda}_n$ 为矩阵$S_n=\sum_{i=1}^nX_iX_i’$的最小特征值. 进一步, 在误差独立且不含渐近退化子列及其他条件下, 证明了上述收敛速度是确切的. 此外, 平行于Drygas (1976)关于线性回归模型的一个经典结果, 证明了对于广义线性模型, 为保证拟似然估计的弱相合性的必要条件 是当$n\to\infty$时, $\,S_n^{-1}\to 0$.  相似文献   

2.
如果A是Πsubsub空间上的自共轭算子,由文[1]可知存在空间昨一个标准分解 \[{\Pi _k} = N \oplus \{ Z + {Z^*}\} \oplus P\] 在此分解下,A有三角模型\[A = \{ S,{A_N},{A_p},F,G,Q\} \].利用三角模型,我们直接证明了 定理1设A是\[{\Pi _k}\]上的-共轭算子,n是任何自然数,那末\[{A^n}\]也是自共轭算子. 定理2设A是\[{A^n}\]上的自共轭算子,那末对所有的\[{A^n}(n = 1,2,...)\],存在一个公共 的标准分解,在此分解下 \[\begin{gathered} {A^n} = \{ {S^n},A_N^n,A_P^n,\sum\limits_{i = 0}^{n - 1} {{S^i}} FA_N^{n - 1 - i},\sum\limits_{i = 0}^{n - 1} {{S^i}GA_P^{n - 1 - i}} , \hfill \ \sum\limits_{i = 0}^{n - 1} {{S^i}} Q{S^{*n - 1 - i}} - \sum\limits_{i + j + k = n - 2} {{S^i}(FA_N^j{F^*} + GA_P^j{G^*}){S^{*k}}} \} \hfill \\ \end{gathered} \] 定理3 设A是瓜空间上的自共轭算子,\[\sigma (A) \subset [0,\infty ),0 \notin {\sigma _P}(A),\],那末存在唯 一的自共轭算子A1,满足\[A_1^n = A,\sigma ({A_1}) \subset [0,\infty )\] 其次,我们研究了谱系在临界点附近的性状.记临界点全体为\[C(A)\]).对 \[{\lambda _0} \in C(A)\]记S与入0相应的最高阶根向量的阶数为\[r({\lambda _0})\] 定理4设A是\[{\Pi _k}\]空间上的无界自共轭算子,\[C(A) \cap ({\mu _1},{\nu _1}) = \{ {\lambda _0}\} \],那末以下四 个命题等价: (i)\[\mathop {sup}\limits_{\mu ,\nu } \{ \left\| {{E_{\mu \nu }}} \right\||{\lambda _0} \in (\mu ,\nu ) \subset ({\mu _1},{\nu _1})\} < \infty \] (ii)\[{\mu ^{{\text{1}}}}...,{\mu ^{{{\text{k}}_{\text{0}}}}}\]是全有限的测度; (iii)\[s - \lim {\kern 1pt} {\kern 1pt} {\kern 1pt} {E_{\mu \nu }}\]存在; (iv)A与\[{\lambda _0}\]相应的根子空间\[{\Phi _{{\lambda _0}}}\]非退化;这里\[{\mu ^{{\text{1}}}}...,{\mu ^{{{\text{k}}_{\text{0}}}}}\]是由\[{A_P}\]与G导出的测度. 定通5 设A是\[{\Pi _k}\]上自共轭算子,\[{\lambda _0} \in C(A),r({\lambda _0}) = n\],那么 (i)\[{E_{\mu \nu }}\]在\[{{\lambda _0}}\]处的奇性次数不超过2n, (ii)\[s - \mathop {\lim }\limits_{\varepsilon \to 0} \int_{[{M_1},{\lambda _0} - \varepsilon )} {(t - {\lambda _0}} {)^{2n}}d{E_t},s - \mathop {\lim }\limits_{\varepsilon \to 0} \int_{[{\lambda _0} + \varepsilon ,{M_2})} {(t - {\lambda _0}} {)^{2n}}d{E_t},\]存在。这里\[{M_1},{M_2}\]满足\[[{M_1},{M_2}] \cap C(A) = \{ {\lambda _0}\} \] 定理6 设A是\[{\Pi _k}\]上的自共轭算子,临界点集\[C(A) = \{ {\lambda _1},...,{\lambda _l},{\lambda _{l + 1}},{\overline \lambda _{l + 1}},...,{\lambda _{l + p}},{\overline \lambda _{l + p}},\],这里\[\operatorname{Im} {\lambda _v} = 0(1 \leqslant \nu \leqslant l),r({\lambda _\nu }) = {n_\nu }\]那么有 \[{(\lambda - A)^{ - 1}} = \int_{ - \infty }^\infty {K(\lambda ,t)d{E_t}} + \sum\limits_{\nu = 1}^l {\sum\limits_{i = 1}^{2{n_\nu } + 1} {\frac{{{B_{\nu i}}}}{{{{(\lambda - {\lambda _\nu })}^i}}}} } + \sum\limits_{\nu = l + 1}^{l + p} {\sum\limits_{i = 1}^{{n_\nu }} {[\frac{{{B_{\nu i}}}}{{{{(\lambda - {\lambda _\nu })}^i}}}} } + \frac{{B_{\nu i}^ + }}{{{{(\lambda - {{\overline \lambda }_v})}^i}}}]\] 这里 \[K(\lambda ,t) = \frac{1}{{\lambda - t}} - \sum\limits_{v = 1}^l {\delta (t - {\lambda _v}} )\sum\limits_{i = 1}^{2{n_v}} {\frac{{{{(t - {\lambda _v})}^{i - 1}}}}{{{{(\lambda - {\lambda _v})}^i}}}} ,\delta \lambda {\text{ = }}\left\{ \begin{gathered} {\text{1}}{\text{|}}\lambda {\text{| < }}\delta \hfill \ {\text{0}}{\text{|}}\lambda {\text{|}} \geqslant \delta \hfill \\ \end{gathered} \right.\] \[0 < \delta < \mathop {\min }\limits_\begin{subarray}{l} 1 \leqslant \mu ,v \leqslant l \\ {\lambda _\mu } \ne {\lambda _v} \end{subarray} |{\lambda _\mu } - {\lambda _v}|\].对\[1 \leqslant v \leqslant l\],\[{B_{vi}}\]是\[{\Pi _k}\]上的有界自共轭算子,而当\[l + 1 \leqslant v \leqslant l + p\]时,\[{B_{vi}} = {({\lambda _\mu } - S)^{i - 1}}{P_{\lambda v}}\]是以与\[{{\lambda _v}}\]相应的根子空间为值域的某些平行投影. 定理7 在定理6的条件下,有 \[\begin{gathered} {\text{f}}(A) = \int_{ - \infty }^\infty {[f(t) - \sum\limits_{v = 1}^l {\delta (t - {\lambda _v}} } )\sum\limits_{i = 0}^{2{n_v} - 1} {\frac{{{f^{(i)}}({\lambda _v})}}{{i!}}} (t - {\lambda _v})d{E_t} \hfill \ {\text{ + }}\sum\limits_{{\text{v = 1}}}^{\text{l}} {\sum\limits_{i = 0}^{2{n_v}} {\frac{{{f^{(i)}}({\lambda _0})}}{{i!}}} } {B_v} + \sum\limits_{v = l + 1}^{l + p} {\sum\limits_{i = 0}^{{n_v} - 1} {[\frac{{{f^{(i)}}({\lambda _v})}}{{i!}}} } {B_{vi}} + \frac{{{f^{(i)}}({{\overline \lambda }_v})}}{{i!}}B_{vi}^ + ] \hfill \\ \end{gathered} \] 这里\[f(\lambda )\]在\[\sigma (A)\]的一个邻域内解析. 为了建立更一般的算子演算,我们引入两个特殊的代数: \[{\Omega _n} = \{ (f,\{ {a_i}\} _{i = 0}^{2n})|f\]为Borel可测函数,\[\{ {a_i}\} \]为一常数}。对\[F = (f,\{ {a_i}\} ) \in {\Omega _n},G = (g,\{ {b_i}\} ) \in {\Omega _n}\],定义 \[\begin{gathered} \alpha F + \beta G = (\alpha f + \beta G,\{ \alpha {a_i} + \beta {b_i}\} ) \hfill \ F \cdot G = (f \cdot g,\{ \sum\limits_{j = 0}^i {{a_j}} {b_{i - j}}\} ),\overline F = (\overline f ,\{ {\overline a _i}\} ) \hfill \\ \end{gathered} \] 显然\[{\Omega _n}\]是一个交换代数,它的子代数\[{\omega _n}\]定义为 \[{\omega _n} = \{ F = (f,\{ {a_i}\} ) \in {\Omega _n}|\]在0点的一个与F有关的邻域中,成立\[{\text{|f(t) - }}\sum\limits_{i = 0}^{2n} {a{t^i}} | \leqslant {M_F}|t{|^{2n + 1}},{M_F}\]与F有关} 定义 设A是\[{\Pi _k}\]上的自共轭算子,C(A)={0},r(0)=n,对\[F = (f,\{ {a_i}\} ) \in {\omega _n}\],定义 \[\begin{gathered} FA{\text{ = }}\int_{{\text{ - }}\infty }^\infty {|f(t) - \sum\limits_{i = 0}^{2n} {{a_i}} } {t^i}{|^2}d{E_t} + \sum\limits_{i = 0}^{2n} {{a_i}} {A^i} \hfill \ DF(A)) = D({A^{2n}}) \cap \{ x \in {\Pi _k}\int_{{\text{ - }}\infty }^\infty {|f(t) - \sum\limits_{i = 0}^{2n} {{a_i}} } {t^i}{|^2}d{\left\| {{E_t}x} \right\|^2} < \infty \hfill \\ \end{gathered} \] 如果f解析,\[F = (f,\{ \frac{{{f^{(i)}}(0)}}{{i!}}\} )\],那么可得F(A)=f(A)。 定理8 设A是有界自共轭算子,C(A)={0},r(0)=n,\[G \in {\omega _n}\],那么 \[\begin{gathered} \overline F (A) = {[F(A)]^ + },(\alpha F + \beta G)(A) = \alpha F(A) + \beta G(A) \hfill \ (FG)(A) = F(A)G(A). \hfill \\ \end{gathered} \] 定理9 设A是\[{\Pi _k}\]上的自共轭算子,C(A)={0},r(0)=n,\[{F_1} = ({f_1},\{ {a_i}\} ) \in {\Omega _n}\],\[{F_2} = ({f_2},\{ {a_i}\} ) \in {\omega _n},{f_1},{f_2}\]在\[( - \infty ,\infty )\]连续,在\[\sigma (A)\]上恒等,那么\[{F_1}(A) = {F_2}(A)\]。 定理10 设A是\[{\Pi _k}\]上自共轭算子C(A)={0},r(0)=n,\[F = (f,\{ {a_i}\} ) \in {\Omega _n}\]f是连续函数,那么\[\sigma (F(A)) = \{ f(t)|t \in \sigma (A)\} \]。 在定理11中,我们建立了F(A)的三角模型并由此证明当\[F = \overline F \]时,\[C(F(A)) = \{ f(t)|t \in C(A)\} \] 定理12 设A施可析\[{\Pi _k}\]空间上的自共轭算子,C(A)={0},r(0)=n,与0相应的根子空间非退化,T是稠定闭算子,那么\[T \in {\{ A\} ^{'}}\]的充要条件是存在\[F \in {\Omega _n}\],使T=F(A)。这里\[{\{ A\} ^{'}} = \{ T|\]对满足\[BA \subset AB\]的有界算子B,均有\[BT \subset TB\]}  相似文献   

3.
Let \[\varphi (x) = \sum\limits_{k = 1}^\infty {{A_k}} {x^k},\Phi (x) = {e^{\varphi (x)}} = \sum\limits_{k = 1}^\infty {{D_k}} {x^k}\] \[\begin{gathered} \frac{1}{{{{(1 - x)}^\lambda }}} = \sum\limits_{k = 1}^\infty {{d_k}} (\lambda ){x^k} \hfill \ {\overline \Delta _n}(\lambda ) = {\lambda ^{2 - p}}\sum\limits_{k = 1}^\infty {{k^{p - 1}}} \mathop {|{A_k}|}\nolimits_{}^p - \sum\limits_{k = 1}^\infty {\frac{1}{k}} \hfill \\ \end{gathered} \] Milin-Lebedey proved that \[\sum\limits_{k = 0}^\infty {\frac{{|{D_k}{|^p}}}{{d_k^{p - 1}(\lambda )}}} \leqslant \exp \{ {\lambda ^{1 - p}}\sum\limits_{k = 1}^\infty {{k^{p - 1}}} |{A_k}{|^p}\} \] where p>l and \[\lambda \]>0. In this paper, we have proved the following theorems; Theorem 1. Let \[p \geqslant 1,\lambda > 0\] and \[F(x) = \sum\limits_{k = 0}^\infty {\frac{{|{D_k}{|^p}}}{{d_k^p(\lambda )}}} {x^p}\exp \{ - {\lambda ^{1 - p}}\sum\limits_{k = 1}^\infty {{k^{p - 1}}|{A_k}{|^p}{x^k}} \} (2)\] then F(x) is a decreasing function of x on [0, 1]. This theorem is stronger than the result (1). Theorem 2. Let \[p \geqslant 2,\lambda > 0\] and \[{{\bar Q}_n}(\lambda ) = \frac{1}{{n + 1}}\sum\limits_{k = 0}^n {\frac{{|{D_k}{|^p}}}{{d_k^p(\lambda )}}\exp } \{ - \frac{1}{{n + 1}}\sum\limits_{v = 1}^n {\overline {{\Delta _p}} } (\lambda )\} \] then \[{{\bar Q}_n}(\lambda )\] is a decreasing fimctLon of n(n=l, 2,...)In the case p=2 this is contained in the Miiin-Lebedev's result.  相似文献   

4.
Let \[\varphi (x) = \sum\limits_{k = 1}^\infty {{A_k}} {x^k},\Phi (x) = {e^{\varphi (x)}} = \sum\limits_{k = 1}^\infty {{D_k}} {x^k}\] \[\begin{gathered} \frac{1}{{{{(1 - x)}^\lambda }}} = \sum\limits_{k = 1}^\infty {{d_k}} (\lambda ){x^k} \hfill \ {\overline \Delta _n}(\lambda ) = {\lambda ^{2 - p}}\sum\limits_{k = 1}^\infty {{k^{p - 1}}} \mathop {|{A_k}|}\nolimits_{}^p - \sum\limits_{k = 1}^\infty {\frac{1}{k}} \hfill \\ \end{gathered} \] Milin-Lebedey proved that \[\sum\limits_{k = 0}^\infty {\frac{{|{D_k}{|^p}}}{{d_k^{p - 1}(\lambda )}}} \leqslant \exp \{ {\lambda ^{1 - p}}\sum\limits_{k = 1}^\infty {{k^{p - 1}}} |{A_k}{|^p}\} \] where p>l and \[\lambda \]>0. In this paper, we have proved the following theorems; Theorem 1. Let \[p \geqslant 1,\lambda > 0\] and \[F(x) = \sum\limits_{k = 0}^\infty {\frac{{|{D_k}{|^p}}}{{d_k^p(\lambda )}}} {x^p}\exp \{ - {\lambda ^{1 - p}}\sum\limits_{k = 1}^\infty {{k^{p - 1}}|{A_k}{|^p}{x^k}} \} (2)\] then F(x) is a decreasing function of x on [0, 1]. This theorem is stronger than the result (1). Theorem 2. Let \[p \geqslant 2,\lambda > 0\] and \[{{\bar Q}_n}(\lambda ) = \frac{1}{{n + 1}}\sum\limits_{k = 0}^n {\frac{{|{D_k}{|^p}}}{{d_k^p(\lambda )}}\exp } \{ - \frac{1}{{n + 1}}\sum\limits_{v = 1}^n {\overline {{\Delta _p}} } (\lambda )\} \] then \[{{\bar Q}_n}(\lambda )\] is a decreasing fimctLon of n(n=l, 2,...)In the case p=2 this is contained in the Miiin-Lebedev's result.  相似文献   

5.
本文研究了下列变系数混合效应模型: $y_{ij}=z_{ij}^{\tau}b_i+x_{ij}^{\tau}\beta(w_{ij}) +\xe_{ij},\;i=1,\cdots,m;\;j=1,\cdots,n_i$, 其中$b_i$为i.i.d.期望为$\xt$, 协方差阵为$\xs^2_bI_q$的随机效应向量, $\xe_{ij}$是i.i.d.期望为零, 具有有限方差的随机误差. 文中我们不仅给出了函数系数向量$\xb(\cdot)$的局部多项式估计, 同时给出了随机效应期望、方差和随机误差方差的估计, 并给出了这些估计量的渐进正态性和相合性, 研究结果表明了这些估计量的可靠性.  相似文献   

6.
该文研究了随机函数列{ tλn (ω) } 在加权Banach空间$C_{\alpha}$中的完备性与闭包.其中$C_{\alpha}$表示在正实轴上连续且满足当,$t\rightarrow +\infty$时,$|f(t)|{\rm e}^{-\alpha(t)}\rightarrow0$的连续复函数组成的Banach空间.  相似文献   

7.
设$W_{\beta}(x)=\exp(-\frac{1}{2}|x|^{\beta})~(\beta > 7/6)$ 为Freud权, Freud正交多项式定义为满足下式$\int_{- \infty}^{\infty}p_{n}(x)p_{m}(x)W_{\beta}^{2}(x)\rd x=\left \{ \begin{array}{ll} 0 & \hspace{3mm} n \neq m , \\ 1 & \hspace{3mm}n = m \end{array} \right.$的  相似文献   

8.
多维广义线性模型拟极大似然估计的弱相合性   总被引:3,自引:0,他引:3       下载免费PDF全文
本文考虑多维广义线性模型的拟似然方程$\tsm^n_{i=1}X_i(y_i-\mu(X_i'\xb))=0$, 在一定条件下证明了此方程的解$\wh\xb_n$渐近存在, 并得到了其收敛速度, 即$\wh\xb_n-\xb_0=O_p({\underline{\xl}}_n^{-1/2})$, 其中$\xb_0$为参数$\xb$的真值, $\underline{\xl}_n$是方阵$S_n=\tsm^n_{i=1}X_iX_i'$的最小特征值。  相似文献   

9.
设$K$是自反的并且具有一致Gateaux可微范数的Banach空间$E$的非空有界闭凸子集.设$T:K\rightarrow K$是一致连续的伪压缩映象.假设$K$的每一非空有界闭凸子集对非扩张映象具有不动点性质.设$\{\lambda_n\}$是$(0,\frac{1}{2}]$中序列满足: (i) $\lim_{n\rightarrow \infty}\lambda_n=0$; (ii) $\sum_{n=0}^{\infty}\lambda_n=\infty$.任给$x_1\in K$,定义迭代序列$\{x_n\}$为:$x_{n+1}=(1-\lambda_n)x_n+\lambda_nTx_n-\lambda_n(x_n-x_1),n\geq 1.$若$\lim_{n\rightarrow \infty}\|x_n-Tx_n\|=0$, 则上述迭代产生的$\{x_n\}$强收敛到$T$的不动点.  相似文献   

10.
本文研究了分数阶薛定谔-泊松系统$$\left\{\begin{array}{l}(-\Delta)^su+u+\phi u=\lambda f(u)\ \text {in} \ \mathbb {R}^3, \\ (-\Delta)^{\alpha}\phi =u^2\ \text {in} \ \mathbb {R}^3\emph{},\end{array}\right. $$ 非零解的存在性, 其中$s\in (\frac{3}{4},1), \alpha\in(0,1),\lambda$ 是正参数, $(-\Delta)^s,(-\Delta)^{\alpha}$是分数阶拉普拉斯算子. 在一定的假设条件下, 利用扰动法和Morse迭代法, 得到了系统至少一个非平凡解.  相似文献   

11.
Summary. Let $\widehat{\widehat T}_n$ and $\overline U_n$ denote the modified Chebyshev polynomials defined by $\widehat{\widehat T}_n (x) = {T_{2n + 1} \left(\sqrt{x + 3 \over 4} \right) \over \sqrt{x + 3 \over 4}}, \quad \overline U_{n}(x) = U_{n} \left({x + 1 \over 2}\right) \qquad (n \in \mathbb{N}_{0},\ x \in \mathbb{R}).$ For all $n \in \mathbb{N}_{0}$ define $\widehat{\widehat T}_{-(n + 1)} = \widehat{\widehat T}_n$ and $\overline U_{-(n + 2)} = - \overline U_n$, furthermore $\overline U_{-1} = 0$. In this paper, summation formulae for sums of type $\sum\limits^{+\infty}_{k = -\infty} \mathbf a_{\mathbf k}(\nu; x)$ are given, where $\bigl(\mathbf a_{\mathbf k}(\nu; x)\bigr)^{-1} = (-1)^k \cdot \Bigl( x \cdot \widehat{\widehat T}_{\left[k + 1 \over 2\right] - 1} (\nu) +\widehat{\widehat T}_{\left[k + 1 \over 2\right]}(\nu)\Bigr) \cdot \Bigl(x \cdot \overline U_{\left[k \over 2\right] - 1} (\nu) + \overline U_{\left[k \over 2\right]} (\nu)\Bigr)$ with real constants $ x, \nu $. The above sums will turn out to be telescope sums. They appear in connection with projective geometry. The directed euclidean measures of the line segments of a projective scale form a sequence of type $(\mathbf a_{\mathbf k} (\nu;x))_{k \in \mathbb{Z}}$ where $ \nu $ is the cross-ratio of the scale, and x is the ratio of two consecutive line segments once chosen. In case of hyperbolic $(\nu \in \mathbb{R} \setminus] - 3,1[)$ and parabolic $\nu = -3$ scales, the formula $\sum\limits^{+\infty}_{k = -\infty} \mathbf a_{\mathbf k} (\nu; x) = {\frac{1}{x - q_{{+}\atop(-)}}} - {\frac{1}{x - q_{{-}\atop(+)}}} \eqno (1)$ holds for $\nu > 1$ (resp. $\nu \leq - 3$), unless the scale is geometric, that is unless $x = q_+$ or $x = q_-$. By $q_{\pm} = {-(\nu + 1) \pm \sqrt{(\nu - 1)(\nu + 3)} \over 2}$ we denote the quotient of the associated geometric sequence.
  相似文献   

12.
奇异非线性$p-$调和方程的一类正整体解   总被引:2,自引:0,他引:2  
设p>1,β≥0是常数, n是自然数, 是一个连续函数.本文研究形如的奇异非线性p-调和方程的正整体解,给出了该类方程具有无穷多个其渐近阶刚好为|x|(2n-2)(当|x|→∞时)的径向对称的正整体解的若干充分条件.  相似文献   

13.
Let $\Omega$ be a bounded domain in ${\bf R^n}$ with Lipschitz boundary, $\lambda >0,$ and $1\le p \le (n+2)/(n-2)$ if $n\ge 3$ and $1\le p< +\infty$ if $n=1,2$. Let $D$ be a measurable subset of $\Omega$ which belongs to the class $ {\cal C}_{\beta}=\{D\subset \Omega \quad | \quad |D|=\beta\} $ for the prescribed $\beta\in (0, |\Omega|).$ For any $D\in{\cal C}_{\beta}$, it is well known that there exists a unique global minimizer $u\in H^1_0(\Omega)$, which we denote by $u_D$, of the functional \[\quad J_{\Omega,D}(v)=\frac12\int_{\Omega}|\nabla v|^2\, dx+\frac{\lambda}{p+1}\int_{\Omega}|v|^{p+1}\, dx -\int_{\Omega}\chi_Dv\,dx \] on $H^1_0(\Omega)$. We consider the optimization problem $ E_{\beta,\Omega}=\inf_{D\in {\cal C}_{\beta}} J_D(u_D) $ and say that a subset $D^*\in {\cal C}_{\beta}$ which attains $E_{\beta,\Omega}$ is an optimal configuration to this problem. In this paper we show the existence, uniqueness and non-uniqueness, and symmetry-preserving and symmetry-breaking phenomena of the optimal configuration $D^*$ to this optimization problem in various settings.  相似文献   

14.
We consider the limiting property of the distribution function of L~p function at endpoints 0 and ∞ and prove that for λ 0 the following two equations limλ→+∞λ~pm({x : |f(x)| λ}) = 0, limλ→0+λ~pm({x : |f(x)| λ}) = 0hold for f ∈ L~p(Rn) with 1 ≤ p ∞. This result is naturally applied to many operators of type(p, q) as well.  相似文献   

15.
在广义线性模型中,若(对某个α>0),且其它一些正则条件满足,可以证明Wald检验统计量的渐近分布是X2分布,其中,是ZiZi'的最小特征根,Zi是有界的p×q回归系数,yi是q×1响应变量.  相似文献   

16.
设k和r是满足k≥3及r≥Ψ(k)+1的正整数,这里当3≤k≤4时,Ψ(k)=2~(k-1);而当k≥5时,Ψ(k)=1/2k(k+1).假定δ和ε是给定的足够小的正数,λ_1,λ_2,…,λ_(r+1)是不全同号且两两之比不全为有理数的非零实数.对于任意实数η与0σ2~(1-2k)/r-1,证明了:存在一个正数序列X→+∞,使得不等式|λ_1p_1~k+λ_2p_2~k+···+λ_rp_r~k+λ_(r+1)p_(r+1)+η|(max(1≤j≤r+1)p_j)~(-σ)有》■X~(■-(2~(1-2k))/(r-1)+ε组素数解(p_1,p_2,…,p_(r+1)),这里(δX)~(1/k)≤p_j≤X~(1/k)(1≤j≤r)及δX≤p_(r+1)≤X.这改进了之前的结果.  相似文献   

17.
In this paper,the asymptotic behavior of a non-local hyperbolic problem modelling Ohmic heating is studied.It is found that the behavior of the solution of the hyperbolic problem only has three cases:the solution is globally bounded and the unique steady state is globally asymptotically stable;the solution is infinite when t→∞;the solution blows up.If the solution blows up,the blow-up is uniform on any compact subsets of(0,1] and the blow-up rate is lim t → T*-u(x,t)(T*-t)1/α+βp-1=(α+βp-1/1-α)1/1-α-βp,where T* is the blow-up time.  相似文献   

18.
${\mbox{\boldmath $R$}}^N$上奇异非线性多调和方程的正整体解   总被引:7,自引:2,他引:5  
本文研究形如△((△nu)(p-1) )=f(|x|,u,|(?)u|)u-β,x∈RN的奇异非线性多调和方程在RN上的正整体解,此处P>1,β≥0是常数,n是自然数,f:R × R ×R →R 是一个连续函数, ξδ*:=sign(ξ)·|ξ|δ,,ξ∈R,δ>0,给出了该类方程具有无穷多个其渐进阶刚好为|x|2n的正整体解的充分条件与必要条件.这些结论可以推广到更一般的方程.  相似文献   

19.
Let $\Omega\subset \mathbb{R}^4$ be a smooth bounded domain, $W_0^{2,2}(\Omega)$ be the usual Sobolev space. For any positive integer $\ell$, $\lambda_{\ell}(\Omega)$ is the $\ell$-th eigenvalue of the bi-Laplacian operator. Define $E_{\ell}=E_{\lambda_1(\Omega)}\oplus E_{\lambda_2(\Omega)}\oplus\cdots\oplus E_{\lambda_{\ell}(\Omega)}$, where $E_{\lambda_i(\Omega)}$ is eigenfunction space associated with $\lambda_i(\Omega)$. $E^{\bot}_{\ell}$ denotes the orthogonal complement of $E_\ell$ in $W_0^{2,2}(\Omega)$. For $0\leq\alpha<\lambda_{\ell+1}(\Omega)$, we define a norm by $\|u\|_{2,\alpha}^{2}=\|\Delta u\|^2_2-\alpha \|u\|^2_2$ for $u\in E^\bot_{\ell}$. In this paper, using the blow-up analysis, we prove the following Adams inequalities$$\sup_{u\in E_{\ell}^{\bot},\,\| u\|_{2,\alpha}\leq 1}\int_{\Omega}e^{32\pi^2u^2}{\rm d}x<+\infty;$$moreover, the above supremum can be attained by a function $u_0\in E_{\ell}^{\bot}\cap C^4(\overline{\Omega})$ with $\|u_0\|_{2,\alpha}=1$. This result extends that of Yang (J. Differential Equations, 2015), and complements that of Lu and Yang (Adv. Math. 2009) and Nguyen (arXiv: 1701.08249, 2017).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号