首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we propose a shooting algorithm for a class of optimal control problems for which all control variables appear linearly. The shooting system has, in the general case, more equations than unknowns and the Gauss–Newton method is used to compute a zero of the shooting function. This shooting algorithm is locally quadratically convergent, if the derivative of the shooting function is one-to-one at the solution. The main result of this paper is to show that the latter holds whenever a sufficient condition for weak optimality is satisfied. We note that this condition is very close to a second order necessary condition. For the case when the shooting system can be reduced to one having the same number of unknowns and equations (square system), we prove that the mentioned sufficient condition guarantees the stability of the optimal solution under small perturbations and the invertibility of the Jacobian matrix of the shooting function associated with the perturbed problem. We present numerical tests that validate our method.  相似文献   

2.
The trajectory design of horizontal well is a optimal control problem of nonlinear multistage dynamical system. It is often sought using trial-and-error methods, but these methods depend on experience of designers and workers. In this paper, we create new optimal control model of nonlinear dynamical system for the trajectory design of horizontal well. Several properties are discussed. Uniform design method is used to choose the initial points in the feasible region. We demonstrate how to decompose the feasible region into finite subregions in which improved Hook–Jeeves algorithm is employed to search optimal solution. Finally, the feasible optimization algorithm is constructed to find the optimal solution of the system. Several results show the validity of our algorithm. This is preferable, since our method is independent of the experience.  相似文献   

3.
Practical industrial process is usually a dynamic process including uncertainty. Stochastic constraints can be used for industrial process modeling, when system sate and/or control input constraints cannot be strictly satisfied. Thus, optimal control of switched systems with stochastic constraints can be available to address practical industrial process problems with different modes. In general, obtaining an analytical solution of the optimal control problem is usually very difficult due to the discrete nature of the switching law and the complexity of stochastic constraints. To obtain a numerical solution, this problem is formulated as a constrained nonlinear parameter selection problem (CNPSP) based on a relaxation transformation (RT) technique, an adaptive sample approximation (ASA) method, a smooth approximation (SA) technique, and a control parameterization (CP) method. Following that, a penalty function-based random search (PFRS) algorithm is designed for solving the CNPSP based on a novel search rule-based penalty function (NSRPF) method and a novel random search (NRS) algorithm. The convergence results show that the proposed method is globally convergent. Finally, an optimal control problem in automobile test-driving with gear shifts (ATGS) is further extended to illustrate the effectiveness of the proposed method by taking into account some stochastic constraints. Numerical results show that compared with other typical methods, the proposed method is less conservative and can obtain a stable and robust performance when considering the small perturbations in initial system state. In addition, to balance the computation amount and the numerical solution accuracy, a tolerance setting method is also provided by the numerical analysis technique.  相似文献   

4.
In this paper, an optimal control problem governed by semilinear parabolic equation which involves the control variable acting on forcing term and coefficients appearing in the higher order derivative terms is formulated and analyzed. The strong variation method, due originally to Mayne et al to solve the optimal control problem of a lumped parameter system, is extended to solve an optimal control problem governed by semilinear parabolic equation, a necessary condition is obtained, the strong variation algorithm for this optimal control problem is presented, and the corresponding convergence result of the algorithm is verified.  相似文献   

5.
In this paper the method for computing a priori estimates of the approximate optimal control is considered. These estimates provide us with information about the quality of the approximate optimal solution obtained by applying the improvement control procedure. The method is implemented in the form of a parallel algorithm. This algorithm is an essential part of the developed software package intended for optimization of controllable dynamical systems. We also consider the scalability of the parallel algorithm in the OpenTS parallel programming system for chemical and biochemical engineering problems.  相似文献   

6.
We consider an optimal guaranteed control problem for a linear time-varying system that is subject to unknown bounded disturbances. A control strategy is defined that guarantees steering the system to a given terminal set for any realization of disturbances and takes into account that at one future time instant the control loop will be closed. An efficient method for constructing the optimal control strategy and an algorithm for optimal feedback control based on this type of strategies are proposed.  相似文献   

7.
In the paper, we consider the bioprocess system optimal control problem. Generally speaking, it is very difficult to solve this problem analytically. To obtain the numerical solution, the problem is transformed into a parameter optimization problem with some variable bounds, which can be efficiently solved using any conventional optimization algorithms, e.g. the improved Broyden–Fletcher–Goldfarb–Shanno algorithm. However, in spite of the improved Broyden–Fletcher–Goldfarb–Shanno algorithm is very efficient for local search, the solution obtained is usually a local extremum for non-convex optimal control problems. In order to escape from the local extremum, we develop a novel stochastic search method. By performing a large amount of numerical experiments, we find that the novel stochastic search method is excellent in exploration, while bad in exploitation. In order to improve the exploitation, we propose a hybrid numerical optimization algorithm to solve the problem based on the novel stochastic search method and the improved Broyden–Fletcher–Goldfarb–Shanno algorithm. Convergence results indicate that any global optimal solution of the approximate problem is also a global optimal solution of the original problem. Finally, two bioprocess system optimal control problems illustrate that the hybrid numerical optimization algorithm proposed by us is low time-consuming and obtains a better cost function value than the existing approaches.  相似文献   

8.
An optimal control problem utilizing the Levenberg–Marquardt method (LMM) is examined in this study to determine the unknown optimal control heat flux function for a cemented hip replacement system based on the desired temperature distributions at the cement–bone interface to prevent the death of bone tissues. The validation of this optimal control problem is verified by using the numerical experiments. Results show that an optimal control function can be obtained using the present algorithm for the test cases considered in this work to reduce the temperature variation and to save the bone tissues at the cement–bone interface.  相似文献   

9.
A real-coded genetic algorithm (GA) applied to the system identification and control for a class of nonlinear systems is proposed in this paper. It is well known that GA is a globally optimal method motivated from natural evolutionary concepts. For solving a given optimization problem, there are two different kinds of GA operations: binary coding and real coding. In general, a real-coded GA is more suitable and convenient to deal with most practical engineering applications. In this paper, in the beginning we attempt to utilize a real-coded GA to identify the unknown system which its structure is assumed to be known previously. Next, according to the estimated system model an optimal off-line PID controller is optimally solved by also using the real-coded GA. Two simulated examples are finally given to demonstrate the effectiveness of the proposed method.  相似文献   

10.
In this paper, optimal approaches for controlling chaos is studied. The unstable periodic orbits (UPOs) of chaotic system are selected as desired trajectories, which the optimal control strategy should keep the system states on it. Classical gradient-based optimal control methods as well as modern optimization algorithm Particle Swarm Optimization (PSO) are utilized to force the chaotic system to follow the desired UPOs. For better performance, gradient-based is applied in multi-intervals and the results are promising. The Duffing system is selected for examining the proposed approaches. Multi-interval gradient-based approach can put the states on UPOs very fast and keep tracking UPOs with negligible control effort. The maximum control in PSO method is also low. However, due to its inherent random behavior, its control signal is oscillatory.  相似文献   

11.
This paper presents a new computational approach for solving optimal control problems governed by impulsive switched systems. Such systems consist of multiple subsystems operating in succession, with possible instantaneous state jumps occurring when the system switches from one subsystem to another. The control variables are the subsystem durations and a set of system parameters influencing the state jumps. In contrast with most other papers on the control of impulsive switched systems, we do not require every potential subsystem to be active during the time horizon (it may be optimal to delete certain subsystems, especially when the optimal number of switches is unknown). However, any active subsystem must be active for a minimum non-negligible duration of time. This restriction leads to a disjoint feasible region for the subsystem durations. The problem of choosing the subsystem durations and the system parameters to minimize a given cost function is a non-standard optimal control problem that cannot be solved using conventional techniques. By combining a time-scaling transformation and an exact penalty method, we develop a computational algorithm for solving this problem. We then demonstrate the effectiveness of this algorithm by considering a numerical example on the optimization of shrimp harvesting operations.  相似文献   

12.
First- and second-order numerical methods for optimizing controlled dynamical systems with parameters are discussed. In unconstrained-parameter problems, the control parameters are optimized by applying the conjugate gradient method. A more accurate numerical solution in these problems is produced by Newton’s method based on a second-order functional increment formula. Next, a general optimal control problem with state constraints and parameters involved on the righthand sides of the controlled system and in the initial conditions is considered. This complicated problem is reduced to a mathematical programming one, followed by the search for optimal parameter values and control functions by applying a multimethod algorithm. The performance of the proposed technique is demonstrated by solving application problems.  相似文献   

13.
In this work, we propose an adaptive spectral element algorithm for solving non-linear optimal control problems. The method employs orthogonal collocation at the shifted Gegenbauer–Gauss points combined with very accurate and stable numerical quadratures to fully discretize the multiple-phase integral form of the optimal control problem. The proposed algorithm relies on exploiting the underlying smoothness properties of the solutions for computing approximate solutions efficiently. In particular, the method brackets discontinuities and ‘points of nonsmoothness’ through a novel local adaptive algorithm, which achieves a desired accuracy on the discrete dynamical system equations by adjusting both the mesh size and the degree of the approximating polynomials. A rigorous error analysis of the developed numerical quadratures is presented. Finally, the efficiency of the proposed method is demonstrated on three test examples from the open literature.  相似文献   

14.
The goal of planning a horizontal well path is to obtain a trajectory that arrives at a given target subject to various constraints. In this paper, the optimal control problem subject to a nonlinear multistage dynamical system (NMDS) for horizontal well paths is investigated. Some properties of the multistage system are proved. In order to derive the optimality conditions, we transform the optimal control problem into one with control constraints and inequality-constrained trajectories by defining some functions. The properties of these functions are then discussed and optimality conditions for optimal control problem are also given. Finally, an improved simplex method is developed and applied to the optimal design for well Ci-16-Cp146 in Oil Field of Liaohe, and the numerical results illustrate the validity of both the model and the algorithm.  相似文献   

15.
Optimal switch-time control is an area that investigates how best to switch between different control modes. In this paper we present an algorithm for solving the optimal switch-time control problem for single-switch, linear systems where the state of the system is only partially known through the outputs. A method is presented that both guarantees that the current switch time remains optimal as the state estimates evolve, and that ensures this in a computationally feasible manner, thus rendering the method applicable to real-time applications. An extension is moreover considered where constraints on the switch time provide the observer with sufficient time to settle. The viability of the proposed method is illustrated through a number of examples.  相似文献   

16.
本文首先给出了二维圆盘传递装置在极坐标下的药物非线性扩散最优控制模型.然后,用基于迭代法的最小二乘方法求解模型的非线性扩散方程,并估计相应的扩散系数.最后,通过一个数值算例,验证该控制模型和算法在二维圆盘传递装置中是有效的.  相似文献   

17.
A method for calculating the optimal resource consumption control of perturbed dynamic systems is developed. This method includes both normal and singular solutions. According to the method proposed, the problem is subdivided into three independent tasks: (1) consideration of the effects of perturbations on the system, (2) computation of the optimal control structure, and (3) computation of the switching instants of the optimal control. The consideration of the influence of perturbations on the system and the transfer to a nonzero final state are reduced to the transformation of the initial and final states of the system. The control structure calculation is based on a specific method of quasi-optimal control formation. The control switching instants are found by using the relationship between deviations in the initial conditions of the conjugate system and deviations of the phase trajectory at the final instant. An iterative algorithm is developed, and its characteristics are considered. Results of modeling and numerical calculations are presented.  相似文献   

18.
An optimal design problem is formulated as a system of nonlinear equations rather than the extremum of a functional. Based on a new homotopy method, an algorithm is developed for solving the nonlinear system which is globally convergent with probability one. Since no convexity is required, the nonlinear system may have more than one solution. The algorithm will produce an optimal design solution for a given starting point. For most engineering problems, the initial prototype design is already well conceived and close to the global optimal solution. Such a starting point usually leads to the optimal design by the homotopy method, even though Newton's method may diverge from that starting point. A simple example is given.  相似文献   

19.
In this article we study a boundary control problem for an Oseen-type model of viscoelastic fluid flow. The existence of a unique optimal solution is proved and an optimality system is derived by the first-order necessary condition. We investigate finite element approximations to a solution of the optimality system, and a solution algorithm for the system based on the gradient method.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号