首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 265 毫秒
1.
离散时间服务台可修的排队系统MAP/PH(PH/PH)/1   总被引:5,自引:0,他引:5  
本文研究离散时间可修排队系统,其中顾客的输入过程为离散马尔可夫到达过程(MAP),服务台的寿命,服务台的顾客的服务时间和修理时间均为离散位相型(PH)变量,首先我们考虑广义服务过程,证明它是离散MAP,然后运用阵阵几何解理论,我们给出了系统的稳态队长分布和稳态等待时间分布,同时给出了系统的稳态可用度这一可靠性指标。  相似文献   

2.
离散时间排队MAP/PH/3   总被引:1,自引:0,他引:1  
本文研究具有马尔可夫到达过程的离散时间排队MAP/PH/3,系统中有三个服务台,每个服务台对顾客的服务时间均服从位相型分布。运用矩阵几何解的理论,我们给出了系统平稳的充要条件和系统的稳态队长分布。同时我们也给出了到达顾客所见队长分布和平均等待时间。  相似文献   

3.
本文研究了具有位相型休假、位相型启动和单重几何休假的离散时间排队,假定 顾客到达间隔服从一般分布,服务时间服从几何分布,运用矩阵解析方法我们得到了这 些排队系统中顾客在到达时刻稳态队长分布及其随机分解.  相似文献   

4.
本文研究带有破坏性负顾客的离散时间Geo/Geo/1/MWV可修排队系统的顾客策略行为.当破坏性负顾客到达系统时,会移除正在接受服务的正顾客,同时造成服务台故障.服务台一旦发生损坏,会立刻接受维修,修理时间服从几何分布.服务台在工作休假期间会以较低的服务速率对顾客进行服务.我们求得系统的稳态分布,进一步给出服务台不同状态下的均衡进入率以及系统单位时间的社会收益表达式.最后对均衡进入率和均衡社会收益进行了数值分析.  相似文献   

5.
研究服务台可修的Geomertric/G/1离散时间排队系统.在这个系统中,服务台寿命服从几何分布,修理时间服从一般分布.我们求出了服务台首次故障前时间的母函数和服务台首次故障前平均时间(MTTFF).  相似文献   

6.
研究了一个修理工和c个服务台的可修排队系统.假设顾客的到达过程为PH更新过程,服务台在忙时与闲时具有不同的故障率.顾客的服务时间、服务台的寿命以及服务台的修理时间均服从指数分布.通过建立系统的拟生灭过程,得到了系统稳态分布存在的充要条件.利用矩阵几何解方法,给出了系统的稳态队长.在此基础上,得到了系统的某些排队论和可靠性指标.  相似文献   

7.
在现有的几篇可修排队系统文献中,都假定了顾客到达(间隔)时间服从指数分布。本文则首次研究了顾客到达时间服从Erlang分布的可修排队系统。我们研究的可修排队系统Em/G(M/H)/1,其已知的参数如下: (1)顾客到达时间分布是m阶、率为λ的Erlang分布; (2)顾客服务时间分布是一般连续型分布G(t),具有有限均值1/μ; (3)服务台的寿命分布(或称失效分布)是失效率为α的指数分布; (4)服务台的维修分布是一般连续型分布H(t),具有有限均值1/β。通过形成一个向量马尔可夫过程,即采用补充变量方法,我们导出了该系统所有感兴趣的指标。定理1 系统能达到稳定平衡的充要条件是  相似文献   

8.
双输人匹配排队系统是通常排队系统的一种推广.本文对该系统考察了L2-策略休假和服务台可修的两个重要因素.其中假定系统有两个不同的Poisson输入,两类顾客按1:1作成一批进行服务,服务台的寿命服从指数分布,服务时间,修理时间和休假时间都服从一般连续型分布,利用向量马氏过程方法,得到了该排队系统的一些重要的稳态排队论指标和可靠性指标.  相似文献   

9.
服务台可修的GI/M(M/PH)/1排队系统   总被引:7,自引:0,他引:7  
本文首次讨论一个到达间隔为一般分布的可修排队系统。假定服务时间、忙期服务台寿命都服从指疏分布,修复时间是PH变量。首先证明该系统可转化为一个经典的GI/ ̄PH/1排队模型,然后给出系统在稳态下的各种排队论指标和可靠性指标。  相似文献   

10.
讨论了有Bernoulli休假策略和可选服务的离散时间Geo/G/1重试排队系统.假定一旦顾客发现服务台忙或在休假就进入重试区域,重试时间服从几何分布.顾客在进行第一阶段服务结束后可以离开系统或进一步要求可选服务.服务台在每次服务完毕后,可以进行休假,或者等待服务下一个顾客.还研究了在此模型下的马尔可夫链,并计算了在稳态条件下的系统的各种性能指标以及给出一些特例和系统的随机分解.  相似文献   

11.
We consider a discrete-time single-server queueing model where arrivals are governed by a discrete Markovian arrival process (DMAP), which captures both burstiness and correlation in the interarrival times, and the service times and the vacation duration times are assumed to have a general phase-type distributions. The vacation policy is that of a working vacation policy where the server serves the customers at a lower rate during the vacation period as compared to the rate during the normal busy period. Various performance measures of this queueing system like the stationary queue length distribution, waiting time distribution and the distribution of regular busy period are derived. Through numerical experiments, certain insights are presented based on a comparison of the considered model with an equivalent model with independent arrivals, and the effect of the parameters on the performance measures of this model are analyzed.  相似文献   

12.
We study a single removable server in an infinite and a finite queueing systems with Poisson arrivals and general distribution service times. The server may be turned on at arrival epochs or off at service completion epochs. We present a recursive method, using the supplementary variable technique and treating the supplementary variable as the remaining service time, to obtain the steady state probability distribution of the number of customers in a finite system. The method is illustrated analytically for three different service time distributions: exponential, 3-stage Erlang, and deterministic. Cost models for infinite and finite queueing systems are respectively developed to determine the optimal operating policy at minimum cost.  相似文献   

13.
This paper concerns discrete-time queueing systems operating under a first-come-first-served queueing discipline, with deterministic service times of one slot and subject to independent server interruptions. For such systems, we derive a relationship between the probability generating functions of the system content during an arbitrary slot and of the system delay of an arbitrary customer. This relationship is valid regardless of the nature of the arrival process. From this relationship we derive a relationship between the first- and second-order moments of the distributions involved. It is shown that the relationship also applies to subsystems of the queueing system being discussed, and to the waiting time and queue content of a multi-server queueing system with geometric service times and uninterrupted servers.  相似文献   

14.
We consider a novel multi-server queueing system that is potentially useful for optimizing real-world systems, in which the objectives of high performance and low power consumption are conflicting. The queueing model is formulated and investigated under the assumption that an arrival flow is defined by a batch Markovian arrival process and random values characterizing customer processing have the phase-type distribution. If the service time of some customer by a server exceeds a certain random bound, this server receives help from a so-called backup server from a finite pool of backup servers. The behavior of the system is described by a quite complicated multi-dimensional continuous-time Markov chain that is successfully analyzed in this paper. Examples of the potential use of the obtained results in managerial decisions are presented.  相似文献   

15.
A multi-server queueing system with a Markovian arrival process and finite and infinite buffers to model a call center with a call-back option is investigated. If all servers are busy during the customer arrival epoch, the customer may leave the system forever or move to the buffer (such a customer is referred to as a real customer), or, alternatively, request for call-back (such a customer is referred to as a virtual customer). During a waiting period, a real customer can be impatient and may leave the system without service or request for call-back (becomes a virtual customer). The service time of a customer and the dial time to a virtual customer for a server have a phase-type distribution. To simplify the investigation of the system we introduce the notion of a generalized phase-type service time distribution. We determine the stationary distribution of the system states and derive the Laplace–Stieltjes transforms of the sojourn and waiting time distributions for real and virtual customers. Some key performance measures are calculated and numerical results are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号