首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In this article, we present a new two-level stabilized nonconforming finite elements method for the two dimensional Stokes problem. This method is based on a local Gauss integration technique and the mixed nonconforming finite element of the NCP 1P 1 pair (nonconforming linear element for the velocity, conforming linear element for the pressure). The two-level stabilized finite element method involves solving a small stabilized Stokes problem on a coarse mesh with mesh size H and a large stabilized Stokes problem on a fine mesh size h = H/3. Numerical results are presented to show the convergence performance of this combined algorithm.  相似文献   

2.
In this article we consider a two-level finite element Galerkin method using mixed finite elements for the two-dimensional nonstationary incompressible Navier-Stokes equations. The method yields a $H^1$-optimal velocity approximation and a $L_2$-optimal pressure approximation. The two-level finite element Galerkin method involves solving one small, nonlinear Navier-Stokes problem on the coarse mesh with mesh size $H$, one linear Stokes problem on the fine mesh with mesh size $h << H$. The algorithm we study produces an approximate solution with the optimal, asymptotic in $h$, accuracy.  相似文献   

3.
In this paper, we propose a method to improve the convergence rate of the lowest order Raviart-Thomas mixed finite element approximations for the second order elliptic eigenvalue problem. Here, we prove a supercloseness result for the eigenfunction approximations and use a type of finite element postprocessing operator to construct an auxiliary source problem. Then solving the auxiliary additional source problem on an augmented mixed finite element space constructed by refining the mesh or by using the same mesh but increasing the order of corresponding mixed finite element space, we can increase the convergence order of the eigenpair approximation. This postprocessing method costs less computation than solving the eigenvalue problem on the finer mesh directly. Some numerical results are used to confirm the theoretical analysis.  相似文献   

4.
解Stokes特征值问题的一种两水平稳定化有限元方法   总被引:2,自引:1,他引:1       下载免费PDF全文
基于局部Gauss积分,研究了解Stokes特征值问题的一种两水平稳定化有限元方法.该方法涉及在网格步长为H的粗网格上解一个Stokes特征值问题,在网格步长为h=O(H2)的细网格上解一个Stokes问题.这样使其能够仍旧保持最优的逼近精度,求得的解和一般的稳定化有限元解具有相同的收敛阶,即直接在网格步长为h的细网格上解一个Stokes特征值问题.因此,该方法能够节省大量的计算时间.数值试验验证了理论结果.  相似文献   

5.
A multilevel finite element method in space‐time for the two‐dimensional nonstationary Navier‐Stokes problem is considered. The method is a multi‐scale method in which the fully nonlinear Navier‐Stokes problem is only solved on a single coarsest space‐time mesh; subsequent approximations are generated on a succession of refined space‐time meshes by solving a linearized Navier‐Stokes problem about the solution on the previous level. The a priori estimates and error analysis are also presented for the J‐level finite element method. We demonstrate theoretically that for an appropriate choice of space and time mesh widths: hjh, kjk, j = 2, …, J, the J‐level finite element method in space‐time provides the same accuracy as the one‐level method in space‐time in which the fully nonlinear Navier‐Stokes problem is solved on a final finest space‐time mesh. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

6.
In this article, we develop a branch of nonsingular solutions of a Picard multilevel stabilization of mixed finite volume method for the 2D/3D stationary Navier‐Stokes equations without relying on the unique solution condition. The method presented consists of capturing almost all information of initial problem (the nonlinear problems) on the coarsest mesh and then performs one Picard defect correction (the linear problems) on each subsequent mesh based on previous information thus only solving one large linear systems. What is more, the method presented can results in a better coefficient matrix in the model presented with small viscosity. Theoretical results show that the method presented is derived with the convergence rate of the same order as the corresponding finite volume method/finite element method solving the stationary Navier‐Stokes equations on a fine mesh. Therefore, the method presented is definitely more efficient than the standard finite volume method/finite element method. Finally, numerical experiments clearly show the efficiency of the method presented for solving the stationary Navier‐Stokes equations.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 34: 30–50, 2018  相似文献   

7.
This paper provides an accelerated two-grid stabilized mixed finite element scheme for the Stokes eigenvalue problem based on the pressure projection. With the scheme, the solution of the Stokes eigenvalue problem on a fine grid is reduced to the solution of the Stokes eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid. By solving a slightly different linear problem on the fine grid, the new algorithm significantly improves the theoretical error estimate which allows a much coarser mesh to achieve the same asymptotic convergence rate. Finally, numerical experiments are shown to verify the high efficiency and the theoretical results of the new method.  相似文献   

8.
In this paper, a new multilevel correction scheme is proposed to solve Stokes eigenvalue problems by the finite element method. This new scheme contains a series of correction steps, and the accuracy of eigenpair approximation can be improved after each step. In each correction step, we only need to solve a Stokes problem on the corresponding fine finite element space and a Stokes eigenvalue problem on the coarsest finite element space. This correction scheme can improve the efficiency of solving Stokes eigenvalue problems by the finite element method. As applications of this multilevel correction method, a multigrid method and an adaptive finite element technique are introduced for Stokes eigenvalue problems. Some numerical results are given to validate our schemes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
The local projection stabilization allows us to circumvent the Babuška-Brezzi condition and to use equal order interpolation for discretizing the Stokes problem. The projection is usually done in a two-level approach by projecting the pressure gradient onto a discontinuous finite element space living on a patch of elements. We propose a new local projection stabilization method based on (possibly) enriched finite element spaces and discontinuous projection spaces defined on the same mesh. Optimal order of convergence is shown for pairs of approximation and projection spaces satisfying a certain inf-sup condition. Examples are enriched simplicial finite elements and standard quadrilateral/hexahedral elements. The new approach overcomes the problem of an increasing discretization stencil and, thus, is simple to implement in existing computer codes. Numerical tests confirm the theoretical convergence results which are robust with respect to the user-chosen stabilization parameter.

  相似文献   


10.
In this paper we present a posteriori error estimator in a suitable norm of mixed finite element solution for two-dimensional stationary Stokes problem. The estimator is optimal in the sense that, up to multiplicative constant, the upper and lower bounds of the error are the same. The constants are independent of the mesh and the true solution of the problem.  相似文献   

11.
In this article we consider the fully discrete two-level finite element Galerkin method for the two-dimensional nonstationary incompressible Navier-Stokes equations. This method consists in dealing with the fully discrete nonlinear Navier-Stokes problem on a coarse mesh with width $H$ and the fully discrete linear generalized Stokes problem on a fine mesh with width $h << H$. Our results show that if we choose $H=O(h^{1/2}$) this method is as the same stability and convergence as the fully discrete standard finite element Galerkin method which needs dealing with the fully discrete nonlinear Navier-Stokes problem on a fine mesh with width $h$. However, our method is cheaper than the standard fully discrete finite element Galerkin method.  相似文献   

12.
借助于两套有限元网格空间提出了一种求解定常不可压Stokes方程的两层罚函数方法.该方法只需要求解粗网格空间上的Stokes方程和细网格空间上的两个易于求解的罚参数方程(离散后的线性方程组具有相同的对称正定系数矩阵).收敛性分析表明粗网格空间相对于细网格空间可以选择很小,并且罚参数的选取只与粗网格步长和问题的正则性有关.因此罚参数不必选择很小仍能够得到最优解.最后通过数值算例验证了上述理论结果,并且数值对比可知两层罚函数方法对于求解定常不可压Stokes方程具有很好的效果.  相似文献   

13.
We analyze a two grid finite element method with backtracking for the stream function formulation of the stationary Navier—Stokes equations. This two grid method involves solving one small, nonlinear coarse mesh system, one linearized system on the fine mesh and one linear correction problem on the coarse mesh. The algorithm and error analysis are presented.  相似文献   

14.
This paper deals with the numerical approximation of the 2D and 3D Navier-Stokes equations, satisfying nonstandard boundary conditions. This lays on the finite element discretisation of the corresponding Stokes problem, which is achieved through a three-fields stabilized mixed formulation. A priori and a posteriori error bounds are established for the nonlinear problem, ascertaining the convergence of the method. Finally, numerical tests are presented, including mesh refinement via error indicators.

  相似文献   


15.
A new mixed finite element for the Stokes equations is considered. This new finite element is based on a mixed formulation of the Stokes problem in which the gradient of the velocity is introduced and the velocity is approximated by the Raviart-Thomas element [1]. Optimal error estimates are derived. The number of degrees of freedom, for this element, is the lowest possible, and the local conservation of the mass is assured. A hybrid version of the mixed method is also considered. Finally, some numerical results for the incompressible Navier-Stokes equations are presented. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
Interior estimates are proved in the L norm for stable finite element discretizations of the Stokes equations on translation invariant meshes. These estimates yield information about the quality of the finite element solution in subdomains a positive distance from the boundary. While they have been established for second-order elliptic problems, these interior, or local, maximum norm estimates for the Stokes equations are new. By applying finite differenciation methods on a translation invariant mesh, we obtain optimal convergence rates in the mesh size h in the maximum norm. These results can be used for analyzing superconvergence in finite element methods for the Stokes equations.  相似文献   

17.
Daniel Peterseim  Stefan A. Sauter 《PAMM》2007,7(1):2020101-2020102
We introduce a new finite element method, the composite mini element, for the mixed discretization of the Stokes equations on two and three-dimensional domains that may contain a huge number of geometric details. Instead of a geometric resolution of the domain and the boundary condition by the finite element mesh the shape of the finite element functions is adapted to the geometric details. This approach allows low-dimensional approximations even for problems with complicated geometric details such as holes or rough boundaries. It turns out that the method can be viewed as a coarse scale generalization of the classical mini element approach, i.e. it reduces the computational effort while the approximation quality depends linearly on the (coarse) mesh size in the usual way. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Stabilized mixed methods for the Stokes problem   总被引:7,自引:0,他引:7  
Summary The solution of the Stokes problem is approximated by three stabilized mixed methods, one due to Hughes, Balestra, and Franca and the other two being variants of this procedure. In each case the bilinear form associated with the saddle-point problem of the standard mixed formulation is modified to become coercive over the finite element space. Error estimates are derived for each procedure.Dedicated to Ivo Babuka on the occasion of his sixtieth birthday  相似文献   

19.
A penalty method for mixed finite element methods is formulated and studied. The Herrmann-Miyoshi scheme for the biharmonic equation is considered. The main idea is to build a perturbed problem with two parameters playing the role of penalties. The perturbed problem is constructed by replacing principal conditions in the mixed variational formulation at the interface by natural conditions containing parameters. Discretization of the perturbed problem is effected by a finite element method. Estimates for the norm of the difference between the solutions of a discrete perturbed problem and of an initial value problem are derived depending on the mesh size and penalties. Recommendations are given as to how to choose penalties so as to fit a mesh size.  相似文献   

20.
This article proposes and analyzes a multilevel stabilized finite volume method(FVM) for the three‐dimensional stationary Navier–Stokes equations approximated by the lowest equal‐order finite element pairs. The method combines the new stabilized FVM with the multilevel discretization under the assumption of the uniqueness condition. The multilevel stabilized FVM consists of solving the nonlinear problem on the coarsest mesh and then performs one Newton correction step on each subsequent mesh thus only solving one large linear systems. The error analysis shows that the multilevel‐stabilized FVM provides an approximate solution with the convergence rate of the same order as the usual stabilized finite element solution solving the stationary Navier–Stokes equations on a fine mesh for an appropriate choice of mesh widths: hjhj‐12, j = 1,…,J. Therefore, the multilevel stabilized FVM is more efficient than the standard one‐level‐stabilized FVM. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号