首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
We present a modeling framework for the optimization of a multiperiod Supply, Transformation and Distribution (STD) scheduling problem under uncertainty on the product demand, spot supply cost and spot selling price. The Hydrocarbon and Chemical sector has been chosen as the pilot area, but the approach has a far more reaching application. A deterministic treatment of the problem provides unsatisfactory results. We use a 2-stage scenario analysis based on a partial recourse approach, where the STD policy can be implemented for a given set of initial time periods, such that the solution for the other periods does not need to be anticipated and, then, it depends on the scenario to occur. In any case, it takes into consideration all the given scenarios. Novel schemes are presented for modeling multiperiod linking constraints, such that they are satisfied through the scenario tree; they are modeled by using a splitting variable scheme, via a reduntant circular linking representation.  相似文献   

2.
A supply chain network-planning problem is presented as a two-stage resource allocation model with 0-1 discrete variables. In contrast to the deterministic mathematical programming approach, we use scenarios, to represent the uncertainties in demand. This formulation leads to a very large scale mixed integer-programming problem which is intractable. We apply Lagrangian relaxation and its corresponding decomposition of the initial problem in a novel way, whereby the Lagrangian relaxation is reinterpreted as a column generator and the integer feasible solutions are used to approximate the given problem. This approach addresses two closely related problems of scenario analysis and two-stage stochastic programs. Computational solutions for large data instances of these problems are carried out successfully and their solutions analysed and reported. The model and the solution system have been applied to study supply chain capacity investment and planning.  相似文献   

3.
In this work we present a solution procedure for multiperiod water resources system planning, where the aim is to obtain the optimal policy for water resources utilization under uncertainty. The target levels to be achieved are related to the following parameters: reservoir capacity, hydropower demand and other demand uses for urban, industrial, irrigation, ecological and other purposes. The approach allows for the conjunctive use of surface systems together with groundwater. The hydrological exogenous inflow and demand of different kinds are considered via a scenario analysis scheme due to the uncertainty of the parameters. So, a multistage scenario tree is generated and, through the use of full recourse techniques, an implementable solution is obtained for each scenario group at each stage along the planning horizon. A novel scheme is presented for modeling the constraints to preserve the reserved stored water in (directly and non-directly) upstream reservoirs to satisfy potential future needs in demand centers at given time periods. An algorithmic framework based on augmented Lagrangian decomposition is presented. Computational experience is reported for the deterministic case.  相似文献   

4.
While dynamic decision making has traditionally been represented as scenario trees, these may become severely intractable and difficult to compute with an increasing number of time periods. We present an alternative tractable approach to multiperiod international portfolio optimization based on an affine dependence between the decision variables and the past returns. Because local asset and currency returns are modeled separately, the original model is non-linear and non-convex. With the aid of robust optimization techniques, however, we develop a tractable semidefinite programming formulation of our model, where the uncertain returns are contained in an ellipsoidal uncertainty set. We add to our formulation the minimization of the worst case value-at-risk and show the close relationship with robust optimization. Numerical results demonstrate the potential gains from considering a dynamic multiperiod setting relative to a single stage approach.  相似文献   

5.
Annals of Operations Research - We study a problem of integrating the supply chain of roundwood with the supply chain of forest biomass. The developed optimization model is a multiperiod,...  相似文献   

6.
The quality of multi-stage stochastic optimization models as they appear in asset liability management, energy planning, transportation, supply chain management, and other applications depends heavily on the quality of the underlying scenario model, describing the uncertain processes influencing the profit/cost function, such as asset prices and liabilities, the energy demand process, demand for transportation, and the like. A common approach to generate scenarios is based on estimating an unknown distribution and matching its moments with moments of a discrete scenario model. This paper demonstrates that the problem of finding valuable scenario approximations can be viewed as the problem of optimally approximating a given distribution with some distance function. We show that for Lipschitz continuous cost/profit functions it is best to employ the Wasserstein distance. The resulting optimization problem can be viewed as a multi-dimensional facility location problem, for which at least good heuristic algorithms exist. For multi-stage problems, a scenario tree is constructed as a nested facility location problem. Numerical convergence results for financial mean-risk portfolio selection conclude the paper.  相似文献   

7.
This study investigates multiperiod service level (MSL) policies in supply chains facing a stochastic customer demand. The objective of the supply chains is to construct integrated replenishment plans that satisfy strict stockout-oriented performance measures which apply across a multiperiod planning horizon. We formulate the stochastic service level constraints for the fill rate, ready rate, and conditional expected stockout MSL policies. The modeling approach is based on the concept of service level trajectory and provides reformulations of the stochastic planning problems associated with each MSL policy that can be efficiently solved with off-the-shelf optimization solvers. The approach enables the handling of correlated and non-stationary random variables, and is flexible enough to accommodate the implementation of fair service level policies, the assignment of differentiated priority levels per products, or the introduction of response time requirements. We use an earthquake disaster management case study to show the applicability of the approach and derive practical implications about service level policies.  相似文献   

8.
Given a set of m resources and n tasks, the dynamic capacity acquisition and assignment problem seeks a minimum cost schedule of capacity acquisitions for the resources and the assignment of resources to tasks, over a given planning horizon of T periods. This problem arises, for example, in the integrated planning of locations and capacities of distribution centers (DCs), and the assignment of customers to the DCs, in supply chain applications. We consider the dynamic capacity acquisition and assignment problem in an environment where the assignment costs and the processing requirements for the tasks are uncertain. Using a scenario based approach, we develop a stochastic integer programming model for this problem. The highly non-convex nature of this model prevents the application of standard stochastic programming decomposition algorithms. We use a recently developed decomposition based branch-and-bound strategy for the problem. Encouraging preliminary computational results are provided.  相似文献   

9.
The despatch bay is a critical interface within an organisation, linking the warehousing and transport operations. However, delays here have wider supply chain implications given that the flow of materials through the supply chain is disrupted. Despite this, there has been little research on improvement activities to this process. This paper uses a case study of a steel processor to develop a simulation model to test strategies for increasing despatch bay productivity. From the simulation results, it was found that a combination of improvements were needed, to both reduce process times and ensure the earlier receipt of orders. The research approach presented in this paper can be used in other business environments having similar operating conditions.  相似文献   

10.
A scenario tree is an efficient way to represent a stochastic data process in decision problems under uncertainty. This paper addresses how to efficiently generate appropriate scenario trees. A knowledge‐based scenario tree generation method is proposed; the new method is further improved by accounting for subjective judgements or expectations about the random future. Compared with existing approaches, complicated mathematical models and time‐consuming estimation, simulation and optimization problem solution are avoided in our knowledge‐based algorithms, and large‐scale scenario trees can be quickly generated. To show the advantages of the new algorithms, a multiperiod portfolio selection problem is considered, and a dynamic risk measure is adopted to control the intermediate risk, which is superior to the single‐period risk measure used in the existing literature. A series of numerical experiments are carried out by using real trading data from the Shanghai stock market. The results show that the scenarios generated by our algorithms can properly represent the underlying distribution; our algorithms have high performance, say, a scenario tree with up to 10,000 scenarios can be generated in less than a half minute. The applications in the multiperiod portfolio management problem demonstrate that our scenario tree generation methods are stable, and the optimal trading strategies obtained with the generated scenario tree are reasonable, efficient and robust. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A multiperiod model based upon a multicriteria objective function has been developed for a representative area of the Guadalquivir Valley, dividing the irrigated area into homogeneous types of farming as identified by cluster analysis. The model was applied to different future scenarios with a time horizon of 10 years and several different farming environments. A set of eight sustainability indicators has been evaluated for the model. The results show that the evolution of crops over time is closely related to the political environment regarding the Common Agricultural Policy (CAP) and the application of the Water Framework Directive (WFD). Methodological innovation has included the successful simultaneous introduction of MCDM and multiperiod programming techniques applied to agriculture and scenario development.  相似文献   

12.
Supply chain planning as one of the most important processes within the supply chain management concept, has a great impact on firms’ success or failure. This paper considers a supply chain planning problem of an agile manufacturing company operating in a build-to-order environment under various kinds of uncertainty. An integrated optimization approach of procurement, production and distribution costs associated with the supply chain members has been taken into account. A robust optimization scenario-based approach is used to absorb the influence of uncertain parameters and variables. The formulation is a robust optimization model with the objective of minimizing the expected total supply chain cost while maintaining customer service level. The developed multi-product, multi-period, multi-echelon robust mixed-integer linear programming model is then solved using the CPLEX optimization studio and guidance related to future areas of research is given.  相似文献   

13.
Variability reduction and business process synchronization are acknowledged as key to achieving sharp and timely deliveries in supply chain networks. In this paper, we develop an approach that facilitates variability reduction and business process synchronization for supply chains in a cost effective way. The approach developed is founded on an analogy between mechanical design tolerancing and supply chain lead time compression. We first present a motivating example to describe this analogy. Next, we define, using process capability indices, a new index of delivery performance called delivery sharpness which, when used with the classical performance index delivery probability, measures the accuracy as well as the precision with which products are delivered to the customers. Following this, we solve the following specific problem: how do we compute the allowable variability in lead time for individual stages of the supply chain so that specified levels of delivery sharpness and delivery probability are achieved in a cost-effective way? We call this the variance pool allocation (VPA) problem. We suggest an efficient heuristic approach for solving the VPA problem and also show that a variety of important supply chain design problems can be posed as instances of the VPA problem. One such problem, which is addressed in this paper, is the supply chain partner selection problem. We formulate and solve the VPA problem for a plastics industry supply chain and demonstrate how the solution can be used to choose the best mix of supply chain partners.  相似文献   

14.
A new scheme for dealing with uncertainty in scenario trees is presented for dynamic mixed 0–1 optimization problems with strategic and operational stochastic parameters. Let us generically name this type of problems as capacity expansion planning (CEP) in a given system, e.g., supply chain, production, rapid transit network, energy generation and transmission network, etc. The strategic scenario tree is usually a multistage one, and the replicas of the strategic nodes root structures in the form of either a special scenario graph or a two-stage scenario tree, depending on the type of operational activity in the system. Those operational scenario structures impact in the constraints of the model and, thus, in the decomposition methodology for solving usually large-scale problems. This work presents the modeling framework for some of the risk neutral and risk averse measures to consider for CEP problem solving. Two types of risk averse measures are considered. The first one is a time-inconsistent mixture of the chance-constrained and second-order stochastic dominance (SSD) functionals of the value of a given set of functions up to the strategic nodes in selected stages along the time horizon, The second type is a strategic node-based time-consistent SSD functional for the set of operational scenarios in the strategic nodes at selected stages. A specialization of the nested stochastic decomposition methodology for that problem solving is outlined. Its advantages and drawbacks as well as the framework for some schemes to, at least, partially avoid those drawbacks are also presented.  相似文献   

15.
Army fuel planners are responsible for developing daily loading plans that specify which tankers to load, with what fuel, and where to send the loaded tankers. The tools used to accomplish this task are custom built spreadsheets which require large amounts of time and effort to use, update, and keep free of errors. This research presents a transient stochastic simulation–optimization model of the in-theater bulk fuel supply chain, where the simulation model is used to simulate the performance of the fuel supply chain under a particular fuel distribution policy and the optimization portion is used to update the policy so that it results in the performance desired by the Army fuel planner. The fuel distribution policy can then be used to derive the daily loading plan. Due to the multi-objective nature of the problem, the set of policies that form the efficient frontier are all candidate policies for the Army fuel planner to select from. Results of experimentation with a wide variety of supply chain scenarios indicate that, for a given supply chain scenario, the optimization portion of the model identifies a set of fuel distribution policies that address the objectives of the Army fuel planner. In addition, the simulation–optimization model comfortably solves the largest supply chain scenarios the Army fuel planner would reasonably be expected to encounter.  相似文献   

16.
In this note, Luss's approach to optimization of a multiperiod resource allocation problem is employed to include carry-over effects of the controllable variable on future periods and also to include the carry-over effect from previous periods.  相似文献   

17.
The traditional trip-based approach to transportation modeling has been employed for the past decade. The last step of the trip-based modeling approach is traffic assignment, which has been typically formulated as a user equilibrium (UE) problem. In the conventional perspective, the definition of UE traffic assignment is the condition that no road user can unilaterally change routes to reduce their travel time. An equivalent definition is that the travel times of all the used paths between any given origin–destination pair are equal and less than those of the unused paths. The underlying assumption of the UE definition is that road users have full information on the available transportation paths and can potentially use any path if the currently used path is overly congested. However, a more practical scenario is that each road user has a limited path set within which she/he can choose routes from. In this new scenario, we call the resulting user equilibrium an N-path user equilibrium (NPUE), in which each road user has only N paths to select from when making route choices in the network. We introduce a new formulation of the NPUE and derive optimality conditions based on this formulation. Different from traditional modeling framework, the constraints of the proposed model are of linear form, which makes it possible to solve the problem with conventional convex programming techniques. We also show that the traditional UE is a special case of an NPUE and prove the uniqueness of the resulting flow pattern of the NPUE. To efficiently solve this problem, we devise path-based and link-based solution algorithms. The proposed solution algorithms are empirically applied to networks of various sizes to examine the impact of constrained user path sets. Numerical results demonstrate that NPUE results can differ significantly from UE results depending on the number of paths available to road users. In addition, we observed an interesting phenomenon, where increasing the number of paths available to road users can sometimes decrease the overall system performance due to their selfish routing behaviors. This paradox demonstrates that network information should be provided with caution, as such information can do more harm than good in certain transportation systems.  相似文献   

18.
We study the supply chain tactical planning problem of an integrated furniture company located in the Province of Québec, Canada. The paper presents a mathematical model for tactical planning of a subset of the supply chain. The decisions concern procurement, inventory, outsourcing and demand allocation policies. The goal is to define manufacturing and logistics policies that will allow the furniture company to have a competitive level of service at minimum cost. We consider planning horizon of 1 year and the time periods are based on weeks. We assume that customer’s demand is known and dynamic over the planning horizon. Supply chain planning is formulated as a large mixed integer programming model. We developed a heuristic using a time decomposition approach in order to obtain good solutions within reasonable time limit for large size problems. Computational results of the heuristic are reported. We also present the quantitative and qualitative results of the application of the mathematical model to a real industrial case.  相似文献   

19.
This paper proposes a production and differential pricing decision model in a two-echelon supply chain that involves a demand from two or more market segments. In this framework, the retailer is allowed to set different prices during the planning horizon. While integrated production-marketing management has been a key research issue in supply chain management for a long time, little attention has been given to set prices and marketing expenditures in integrated multi-site (parallel) manufacturing systems and multiple demand classes. Generally, the presence of multiple demand classes induced by different market segments may impose demand leakage and then change production plan and ordering policies throughout the supply chain system. To tackle this problem, this paper develops a novel approach in order to provide an optimal aggregate production and marketing plan by interconnecting the sales channels of the retailer and demand. A non-linear model is established to determine optimal price differentiation, marketing expenditures and production plans of manufacturing sites in a multi-period, multi-product and multi-sale channels production planning problem by maximizing total profit of the supply chain. To handle the model and obtain solutions, we propose an efficient analytical model based upon convex hulls. Finally, we apply the proposed procedure to a clothing company in order to show usefulness and significance of the model and solution method.  相似文献   

20.
In this paper we apply stochastic programming modelling and solution techniques to planning problems for a consortium of oil companies. A multiperiod supply, transformation and distribution scheduling problem—the Depot and Refinery Optimization Problem (DROP)—is formulated for strategic or tactical level planning of the consortium's activities. This deterministic model is used as a basis for implementing a stochastic programming formulation with uncertainty in the product demands and spot supply costs (DROPS), whose solution process utilizes the deterministic equivalent linear programming problem. We employ our STOCHGEN general purpose stochastic problem generator to ‘recreate’ the decision (scenario) tree for the unfolding future as this deterministic equivalent. To project random demands for oil products at different spatial locations into the future and to generate random fluctuations in their future prices/costs a stochastic input data simulator is developed and calibrated to historical industry data. The models are written in the modelling language XPRESS-MP and solved by the XPRESS suite of linear programming solvers. From the viewpoint of implementation of large-scale stochastic programming models this study involves decisions in both space and time and careful revision of the original deterministic formulation. The first part of the paper treats the specification, generation and solution of the deterministic DROP model. The stochastic version of the model (DROPS) and its implementation are studied in detail in the second part and a number of related research questions and implications discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号