首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We consider optimal control problems for one-dimensional diffusion processes [ILM0001] where the control processes υt are increasing, positive, and adapted. Several types of expected cost structures associated with each policy υ(.) are adopted, e.g. discounted cost, long term average cost and time average cost. Our work is related to [2,6,12,14,16 and 21], where diffusions are allowed to evolve in the whole space, and to [13] and [20], where diffusions evolve only in bounded regions. We shall present some analytic results about value functions, mainly their characterizations, by simple dynamic programming arguments. Several simple examples are explicitly solved to illustrate the singular behaviour of our problems.  相似文献   

2.
The inverse scattering method is used to determine the distribution limit as ? → 0 of the solution u(x, t, ?) of the initial value problem. Ut ? 6uux + ?2uxxx = 0, u(x, 0) = v(x), where v(x) is a positive bump which decays sufficiently fast as x x→±α. The case v(x) ? 0 has been solved by Peter D. Lax and C. David Levermore [8], [9], [10]. The computation of the distribution limit of u(x, t, ?) as ? → 0 is reduced to a quadratic maximization problem, which is then solved.  相似文献   

3.
Markov processes Xt on (X, FX) and Yt on (Y, FY) are said to be dual with respect to the function f(x, y) if Exf(Xt, y) = Eyf(x, Yt for all x ? X, y ? Y, t ? 0. It is shown that this duality reverses the role of entrance and exit laws for the processes, and that two previously published results of the authors are dual in precisely this sense. The duality relation for the function f(x, y) = 1{x<y} is established for one-dimensional diffusions, and several new results on entrance and exit laws for diffusions, birth-death processes, and discrete time birth-death chains are obtained.  相似文献   

4.
Summary Let x(t) be a diffusion process satisfying a stochastic differential equation and let the observed process y(t) be related to x(t) by dy(t) = g(x(t)) + dw(t) where w(t) is a Brownian motion. The problem considered is that of finding the conditional probability of x(t) conditioned on the observed path y(s), 0st. Results on the Radon-Nikodym derivative of measures induced by diffusions processes are applied to derive equations which determine the required conditional probabilities.  相似文献   

5.
Summary. Let (G, +) and (H, +) be abelian groups such that the equation 2u = v 2u = v is solvable in both G and H. It is shown that if f1, f2, f3, f4, : G ×G ? H f_1, f_2, f_3, f_4, : G \times G \longrightarrow H satisfy the functional equation f1(x + t, y + s) + f2(x - t, y - s) = f3(x + s, y - t) + f4(x - s, y + t) for all x, y, s, t ? G x, y, s, t \in G , then f1, f2, f3, and f4 are given by f1 = w + h, f2 = w - h, f3 = w + k, f4 = w - k where w : G ×G ? H w : G \times G \longrightarrow H is an arbitrary solution of f (x + t, y + s) + f (x - t, y - s) = f (x + s, y - t) + f (x - s, y + t) for all x, y, s, t ? G x, y, s, t \in G , and h, k : G ×G ? H h, k : G \times G \longrightarrow H are arbitrary solutions of Dy,t3g(x,y) = 0 \Delta_{y,t}^{3}g(x,y) = 0 and Dx,t3g(x,y) = 0 \Delta_{x,t}^{3}g(x,y) = 0 for all x, y, s, t ? G x, y, s, t \in G .  相似文献   

6.
Let x t be a diffusion process observed via a noisy sensor, whose output is yt We consider the problem of evaluating the maximum a posteriori trajectory {xs0≤ s ≤ t Based on results of Stratonovich [1] and Ikeda-Watanabe [2], we show that this estimator is given by the solution of an appropriate variational problem which is a slight modification of the "minimum energy" estimator. We compare our results to the non-linear filtering theory and show that for problems which possess a finite dimensional solution, our approach yields also explicit filters. For linear diffusions observed via linear sensors, these filters are identical to the Kalman-filter  相似文献   

7.
The following system considered in this paper:
x¢ = - e(t)x + f(t)fp*(y),        y¢ = - (p-1)g(t)fp(x) - (p-1)h(t)y,x' = -\,e(t)x + f(t)\phi_{p^*}(y), \qquad y'= -\,(p-1)g(t)\phi_p(x) - (p-1)h(t)y,  相似文献   

8.
We consider a diffusion process {x(t)} on a compact Riemannian manifold with generator δ/2 + b. A current‐valued continuous stochastic process {X t} in the sense of Itô [8] corresponds to {x(t)} by considering the stochastic line integral X t(a) along {x(t)} for every smooth 1-form a. Furthermore {X t} is decomposed into the martingale part and the bounded variation part as a current-valued continuous process. We show the central limit theorems for {X t} and the martingale part of {X t}. Occupation time laws for recurrent diffusions and homogenization problems of periodic diffusions are closely related to these theorems  相似文献   

9.
The delta function initial condition solution v*(x,t;y) at x = y ≥ 0 of the generalized Feller equation is used to define a generalized Jacobi Theta function \documentclass{article}\pagestyle{empty}\begin{document}$ \Theta (x,t) = \upsilon *(x,t;0) + 2\sum\limits_{n = 1}^\infty {v*(x,t;y_n)} $\end{document} for a sufficiently rapidly increasing and unbounded positive sequence {yy}. It is shown that Θ(x,t) is analytic in each variable in certain regions of the complex x and t planes and that it is a solution of the generalized Feller equation. For those parameters for which this equation reduces to the heat equation, Θ(x,t) reduces to the third Jacobi Theta function.  相似文献   

10.
We consider an Abel equation (*)y’=p(x)y 2 +q(x)y 3 withp(x), q(x) polynomials inx. A center condition for (*) (closely related to the classical center condition for polynomial vector fields on the plane) is thaty 0=y(0)≡y(1) for any solutiony(x) of (*). Folowing [7], we consider a parametric version of this condition: an equation (**)y’=p(x)y 2 +εq(x)y 3 p, q as above, ε ∈ ℂ, is said to have a parametric center, if for any ɛ and for any solutiony(ɛ,x) of (**)y(ɛ, 0)≡y(ɛ, 1).. We give another proof of the fact, shown in [6], that the parametric center condition implies vanishing of all the momentsm k (1), wherem k (x)=∫ 0 x pk (t)q(t)(dt),P(x)=∫ 0 x p(t)dt. We investigate the structure of zeroes ofm k (x) and generalize a “canonical representation” ofm k (x) given in [7]. On this base we prove in some additional cases a composition conjecture, stated in [6, 7] for a parametric center problem. The research of the first and the third author was supported by the Israel Science Foundation, Grant No. 101/95-1 and by the Minerva Foundation.  相似文献   

11.
In this paper we study the quenching problem for the non-local diffusion equation
ut(x,t) = òW J(x - y)u(y,t)dy + ò\mathbbRN\W J(x - y)dy - u(x,t) - lu - p(x,t) {u_t}(x,t) = \int\limits_\Omega {J(x - y)u(y,t)dy + \int\limits_{{\mathbb{R}^N}\backslash \Omega } {J(x - y)dy - u(x,t) - \lambda {u^{ - p}}(x,t)} }  相似文献   

12.
This paper deals with a class of localized and degenerate quasilinear parabolic systems
ut=f(u)(Du+av(x0,t)),       vt=g(v)(Dv+bu(x0,t))u_t=f(u)(\Delta u+av(x_0,t)),\qquad v_t=g(v)(\Delta v+bu(x_0,t))  相似文献   

13.
In this paper, we study the problem of time periodic solutions to the nonlinear wave equation with x-dependent coefficients on under the boundary conditions a 1 y(0, t)+b 1 y x (0, t) = 0, ( for i = 1, 2) and the periodic conditions y(x, t + T) = y(x, t), y t (x, t + T) = y t (x, t). Such a model arises from the forced vibrations of a bounded nonhomogeneous string and the propagation of seismic waves in nonisotropic media. For , we establish the existence of time periodic solutions in the weak sense by utilizing some important properties of the wave operator with x-dependent coefficients. This work was supported by the 985 Project of Jilin University, the Specialized Research Fund for the Doctoral Program of Higher Education, and the Science Research Foundation for Excellent Young Teachers of College of Mathematics at Jilin University.  相似文献   

14.
A continuous maximum flow problem finds the largest t such that div v = t F(x, y) is possible with a capacity constraint ||(v 1, v 2)|| ≤ c(x, y). The dual problem finds a minimum cut ∂ S which is filled to capacity by the flow through it. This model problem has found increasing application in medical imaging, and the theory continues to develop (along with new algorithms). Remaining difficulties include explicit streamlines for the maximum flow, and constraints that are analogous to a directed graph.  相似文献   

15.
Let X be a real Banach space, ω : [0, +∞) → ? be an increasing continuous function such that ω(0) = 0 and ω(t + s) ≤ ω(t) + ω(s) for all t, s ∈ [0, +∞). According to the infinite dimensional analog of the Osgood theorem if ∫10 (ω(t))?1 dt = ∞, then for any (t0, x0) ∈ ?×X and any continuous map f : ?×XX such that ∥f(t, x) – f(t, y)∥ ≤ ω(∥xy∥) for all t ∈ ?, x, yX, the Cauchy problem (t) = f(t, x(t)), x(t0) = x0 has a unique solution in a neighborhood of t0. We prove that if X has a complemented subspace with an unconditional Schauder basis and ∫10 (ω(t))?1 dt < ∞ then there exists a continuous map f : ? × XX such that ∥f(t, x) – f(t, y)∥ ≤ ω(∥xy∥) for all (t, x, y) ∈ ? × X × X and the Cauchy problem (t) = f(t, x(t)), x(t0) = x0 has no solutions in any interval of the real line.  相似文献   

16.
In this paper the asymptotic properties as t → + ∞ for a single linear differential equation of the form x(n) + a1 (t)x(n?1)+…. + an(t)x = 0, where the coefficients aj (z) are supposed to be of the power order of growth, are considered. The results obtained in the previous publications of the author were related to the so called regular case when a complete set of roots {λ,(t)}, j = 1, 2, …, n of the characteristic polynomial yn + a1 (t)yn?1 + … + an(t) possesses the property of asymptotic separability. One of the main restrictions of the regular case consists of the demand that the roots of the set {λ,(t)} have not to be equivalent in pairs for t → + ∞. In this paper we consider the some more general case when the set of characteristic roots possesses the property of asymptotic independence which includes the case when the roots may be equivdent in pairs. But some restrictions on the asymptotic behaviour of their differences λi(t)→ λj(t) are preserved. This case demands more complicated technique of investigation. For this purpose the so called asymptotic spaces were introduced. The theory of asymptotic spaces is used for formal solution of an operator equation of the form x = A(x) and has the analogous meaning as the classical theory of solving this equation in Band spaces. For the considered differential equation, the main asymptotic terms of a fundamental system of solution is given in a simple explicit form and the asymptotic fundamental system is represented in the form of asymptotic Emits for several iterate sequences.  相似文献   

17.
We study the boundary-value problem of determining the parameter p of a parabolic equation
v(t) + Av(t) = f(t) + p,    0 \leqslant t \leqslant 1,    v(0) = j,     v(1) = y, v^{\prime}(t) + Av(t) = f(t) + p,\quad 0 \leqslant t \leqslant 1,\quad v(0) = \varphi, \quad v(1) = \psi,  相似文献   

18.
Summary The aim of this paper is to prove the following theorem about characterization of probability distributions in Hilbert spaces:Theorem. — Let x1, x2, …, xn be n (n≥3) independent random variables in the Hilbert spaceH, having their characteristic functionals fk(t) = E[ei(t,x k)], (k=1, 2, …, n): let y1=x1 + xn, y2=x2 + xn, …, yn−1=xn−1 + xn. If the characteristic functional f(t1, t2, …, tn−1) of the random variables (y1, y2, …, yn−1) does not vanish, then the joint distribution of (y1, y2, …, yn−1) determines all the distributions of x1, x2, …, xn up to change of location.  相似文献   

19.
Some oscillation criteria are established by the averaging technique for the second order neutral delay differential equation of Emden-Fowler type (a(t)x¢(t))¢+q1(t)| y(t-s1)|a sgn y(t-s1) +q2(t)| y(t-s2)|b sgn y(t-s2)=0,    t 3 t0,(a(t)x'(t))'+q_1(t)| y(t-\sigma_1)|^{\alpha}\,{\rm sgn}\,y(t-\sigma_1) +q_2(t)| y(t-\sigma_2)|^{\beta}\,{\rm sgn}\,y(t-\sigma_2)=0,\quad t \ge t_0, where x(t) = y(t) + p(t)y(t − τ), τ, σ1 and σ2 are nonnegative constants, α > 0, β > 0, and a, p, q 1, q2 ? C([t0, ¥), \Bbb R)q_2\in C([t_0, \infty), {\Bbb R}) . The results of this paper extend and improve some known results. In particular, two interesting examples that point out the importance of our theorems are also included.  相似文献   

20.
A one dimensional problem for SH waves in an elastic medium is treated which can be written as vtt = A?1 (Avy)y, A = (?μ)1/2, ? = density, and μ = shear modulus. Assume A ? C1 and A′/A ? L1; from an input vy(t, 0) = ?(t) let the response v(t, 0) = g(t) be measured (v(t, y) = 0 for t < 0). Inverse scattering techniques are generalized to recover A(y) for y > 0 in terms of the solution K of a Gelfand-Levitan type equation, .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号