首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 656 毫秒
1.
一个有向多重图D的跳图$J(D)$是一个顶点集为$D$的弧集,其中$(a,b)$是$J(D)$的一条弧当且仅当存在有向多重图$D$中的顶点$u_1$, $v_1$, $u_2$, $v_2$,使得$a=(u_1,v_1)$, $b=(u_2,v_2)$ 并且$v_1\neq u_2$.本文刻画了有向多重图类$\mathcal{H}_1$和$\mathcal{H}_2$,并证明了一个有向多重图$D$的跳图$J(D)$是强连通的当且仅当$D\not\in \mathcal{H}_1$.特别地, $J(D)$是弱连通的当且仅当$D\not\in \mathcal{H}_2$.进一步, 得到以下结果: (i) 存在有向多重图类$\mathcal{D}$使得有向多重图$D$的强连通跳图$J(D)$是强迹连通的当且仅当$D\not\in\mathcal{D}$. (ii) 每一个有向多重图$D$的强连通跳图$J(D)$是弱迹连通的,因此是超欧拉的. (iii) 每一个有向多重图D的弱连通跳图$J(D)$含有生成迹.  相似文献   

2.
本文的主要建立非齐性度量测度空间上双线性强奇异积分算子$\widetilde{T}$及交换子$\widetilde{T}_{b_{1},b_{2}}$在广义Morrey空间$M^{u}_{p}(\mu)$上的有界性. 在假设Lebesgue可测函数$u, u_{1}, u_{2}\in\mathbb{W}_{\tau}$, $u_{1}u_{2}=u$,且$\tau\in(0,2)$. 证明了算子$\widetilde{T}$是从乘积空间$M^{u_{1}}_{p_{1}}(\mu)\times M^{u_{2}}_{p_{2}}(\mu)$到空间$M^{u}_{p}(\mu)$有界的, 也是从乘积空间$M^{u_{1}}_{p_{1}}(\mu)\times M^{u_{2}}_{p_{2}}(\mu)$到广义弱Morrey空间$WM^{u}_{p}(\mu)$有界的,其中$\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$及$1相似文献   

3.
可迹图即为一个含有Hamilton路的图.令$N[v]=N(v)\cup\{v\}$, $J(u,v)=\{w\in N(u)\cap N(v):N(w)\subseteq N[u]\cup N[v]\}$.若图中任意距离为2的两点$u,v$满足$J(u,v)\neq \emptyset$,则称该图为半无爪图.令$\sigma_{k}(G)=\min\{\sum_{v\in S}d(v):S$为$G$中含有$k$个点的独立集\},其中$d(v)$表示图$G$中顶点$v$的度.本论文证明了若图$G$为一个阶数为$n$的连通半无爪图,且$\sigma_{3}(G)\geq {n-2}$,则图$G$为可迹图; 文中给出一个图例,说明上述结果中的界是下确界; 此外,我们证明了若图$G$为一个阶数为$n$的连通半无爪图,且$\sigma_{2}(G)\geq \frac{2({n-2})}{3}$,则该图为可迹图.  相似文献   

4.
本文引入算子代数的性质${\Pi}_\sigma$这一概念,证明了任一 vonNeumann代数中的套子代数和有限宽度CSL子代数都具有性质$\Pi_\sigma.$最后得到张量积公式$\mbox{alg}_{\cal M}{\cal L}_1\overline{\otimes}\mbox{alg}_{\cal N}{\cal L}_2= \mbox{alg}_{{\cal M}\overline{\otimes}{\cal N}}({\cal L}_1\otimes{\cal L}_2)$成立,这里${\cal L}_1$和 ${\cal L}_2$分别是von Neumann代数${\cal M}$和${\cal N}$中的有限宽度CSL.  相似文献   

5.
讨论泛函微分方程$\[\dot x = f(t,{x_t})\]$的解的渐近稳定性理论,往往需要假定f的某种全连续性.Burton在他的论文中讨论了f是一般$\[R \times C \to {R^n}\]$的连续泛函的情况.本文的目的是改进Burton的工作.证明方法釆取更简单的直接证法,证明结果不但同样获得有关解的一致渐近稳定性的结论,而且得到一个有趣的不等式,从中能够导出解的收敛于0的估计式. 设f是$\[R \times C \to {R^n}\]$连续泛函.$$是严格上升的连续函数,$$.设u,v,w是单调不减的连续函数u(0)=v(0)=w(0)=0,且对s>0有u(s),v(s),w(s)>0, 又设$\[|\phi {|_\eta } = \eta (|\phi (0)|) + \frac{1}{r}\int_{ - r}^0 {\eta (|\phi (\theta )|)d} \theta \]$,$\[{w_1}(s) = w({\eta ^{ - 1}}(s))\]$,$\[h(s) = \int_0^s {{w_1}(s)ds} \]$,$\[k(s) = v(s) + \frac{{{w_1}(1)}}{2}rs\]$,那么有如下定理: 定理1 设$\[V:R \times C \to R\]$是连续泛函,使得 $\[u(|\phi (0)|) \le V(t,\phi ) \le v(||\phi |{|_\eta })\]$ $\[V(t,\phi ) \le - w(|\phi (0)|)\]$ 那么必有另一个连续泛函$\[G:R \times C \to R\]$,使得对$ \[\eta (|\mu |) < 1\]$有 $\[G(t,\phi ) \le - g(G(t,\phi )),V(t,\phi ) \le G(t,\phi )\]$, 其中$\[g:{R^ + } \to {R^ + }\]$定义为$\[g(s) = h(\frac{1}{2}{k^{ - 1}}(s))\]$ 定理2 设定理1的条件均满足,设$\[F(y) = \int_1^y {\frac{{dz}}{{g(z)}}} \]$,那么存在s>0使得对于$\[|{\phi _0}| < s\]$有 $\[|x(t;{t_0},{\phi _0})| \le {u^{ - 1}}({F^{ - 1}}(F(G({t_0},{\phi _0})) + {t_0} - t))\]$ 且x=0—致渐近稳定 文章最后给出两个实例说明以上定理的应用.  相似文献   

6.
This paper studies the following initial-boundary value problem for the system of multidimensional inhomogeneous GBBM equations $[\begin{array}{l} {u_r} - \Delta {u_i} + \sum\limits_{i = 1}^n {\frac{\partial }{{\partial {x_i}}}} grad\varphi (u) = f(u),{\rm{ (1}}{\rm{.1)}}\u{|_{t = 0}} = {u_0}(x),x \in \Omega ,{\rm{ (1}}{\rm{.2)}}\u{|_{\partial \Omega }} = 0,t \ge 0,{\rm{ (1}}{\rm{.3)}} \end{array}\]$ The existence and uniqueness of the global solution for the problem(l.l) (1.2) (1.3) are proved. The asymptotic behavior and “blow up” phenomenon of the solution for the problem (1.1) (1.2) (1.3) are investigated under certain conditions.  相似文献   

7.
对加权Dirichlet空间${\cal D}_{\alpha}=\left\{f\in H(D) ; ||f||_{{\cal D}_{\alpha}}^{2}=|f(0)|^{2}+\int_{D}|f'(z)|^{2}(1-|z|)^{\alpha}\d m(z)<+\infty \right\},~~-1<\alpha<+\infty,$我们研究了其上一般Ces$\grave{a}$ro算子的有界性. 此处$H(D)$表示复平面单位圆盘$D$上全纯函数的全体.  相似文献   

8.
The present paper is concerned with the nonlinear elliptic system of second order. Firstly, we shall establish a complex form of the system. Secondly .we shall consider the solvability of some boundary value problems for tbe complex equation of second order. let (1) \[{\Phi _j}(x,y,U,V,{U_x},{U_y},...,{U_{xx}},{U_{yy}},{V_{xx}},{V_{xy}},{V_{yy}}) = 0,j = 1,2\] be the I. G. Petrowkii’s nonlinear elliptic system of second Qrder in the botinded domain G, where \[{\Phi _j}(x,y,{z_1},...,{z_{12}})(j = 1,2)\]) are continuous real functions of the variables \[x,y[(x,y) \in G],{z_1},...,{z_{12}} \in R\], (the real axis), and contiriupusly differentiable for \[{z_1},...,{z_{12}} \in R\]. The solutions \[[U(x,y),V(x,y)]\], F(a?, y)] of the system are understood in the generalized sense. THEOBEM I. i) If the I. G. Petrovskii;s nonlinear system of equations (1) satisfies the M. I. visik-D. Xiagi’s uniformly elliptic condition for any solutions U(x,y),V(x,y) of (1) in G, then it can be written as the following complex equation? (2)\[{W_{z\overline z }} = F(z,W,{W_z},\overline {{W_z}} ,{W_{zz}},{\overline W _{zz}})\] where W=U+iV, z=x+iy, \[{W_z} = \frac{1}{2}[{W_x} - i{W_y}],...,\], ii) If the I. G. Petrovskii's nonlinear elliptic system (1) satisfies the condition that there exist two positive constants \[\delta \] and K, such that (3) \[|{\Phi _{j{U_{xx}}}}|,|{\Phi _{j{U_{xy}}}}|,|{\Phi _{j{U_{yy}}}}|,|{\Phi _{j{V_{xx}}}}|,|{\Phi _{j{V_{xy}}}}|,|{\Phi _{j{V_{yy}}}}| \leqslant K,j = 1,2\] \[|det(A)| \geqslant \delta > 0\], in G, then by a suitable linear trans-formation of the variables (x,y)into variables \[(\xi ,\eta )\], system (1) can be written as the following coinplex equation ⑷ \[{W_{\xi \xi }} = F(\xi ,W,{W_\xi },{\overline W _\xi },{W_{\xi \xi }},{\overline W _{\xi \xi }}),\varsigma = \xi + i\eta \] In the following section, we discuss the complex equation (2) of the following form: ,We^B(z9 Wee)x .\[(5)\left\{ \begin{gathered} {W_{zz}} = F(z,W,{W_z},{\overline W _z},{W_{zz}},{\overline W _{zz}}) \hfill \ F = {Q_1}{W_{zz}} + {Q_2}\overline {{W_{\overline z \overline z }}} + {Q_4}{W_{zz}} + {A_1}{W_z} + {A_2}{\overline W _{\overline z }} \hfill \ + {A_3}\overline {{W_z}} + {A_4}{W_{\bar z}} + {A_5}W + {A_6}\bar W + {A_7}, \hfill \ {Q_j} = {Q_j}(z,W,{W_{\bar z}},{\overline W _{\bar z}},{W_{zz}},{\overline W _{zz}}),j = 1,...,4 \hfill \ {A_j} = {A_j}(z,W,{W_z},{\overline W _z}),j = 1,...,7 \hfill \\ \end{gathered} \right.\] 1) \[{Q_j}(z,W,{W_z},{\overline W _z},U,V),j = 1,...,4.{A_j} = (z,W,{W_z},{\overline W _z}),j = 1,...,7\] are measurable functions of z for any continuously differentiable functions W(z) and measurable functions U(z), V(z) in G, Furthermore they satisfy (6)\[{\left\| {{A_j}} \right\|_{{L_p}(\overline {G)} }} \leqslant {K_0},j = 1,2,{\left\| {{A_j}} \right\|_{{L_p}(\overline {G)} }} \leqslant {K_1},j = 3,...,7\] where\[{K_0},{K_1}( \leqslant {K_0}),p( > 2)\] are constants: 2) Qj, Aj are continuous for \[W,{W_z},{\overline W _z} \in E\](the whole plane) and the continuity is uniform with respect to almost every point \[z \in G\] and \[U,V \in E\] 3) \[F(z,W,{W_z},{\overline W _z},U,V)\] satisfies the following Lipschitz's condition, i.e. for almost every point \[z \in G\], and for all \[W,{W_z},{\overline W _z}{U_1},{U_2},{V_1},{V_2} \in E\], the inequality (7)\[\begin{gathered} |F(z,W,{W_z},{\overline W _z},{U_1},{V_1}) - F(z,W,{W_z},{\overline W _z},{U_2},{V_2})| \hfill \ \leqslant {q_0}|{U_1} - {U_2}| + q_0^'|{V_1} - {V_2}|,{q_0} + q_0^' < 1 \hfill \\ \end{gathered} \] holds where \[{q_0},q_0^'\] are two nonnegative constants. In this paper, let G be a simply connected domain with boundary \[\Gamma \in C_\mu ^2(0 < \mu < 1)\]; without loss of geaerality, we may assume that G is the unit disk |z|<1. Now we, describe the results of the solvability of Riemann-Hilbert botindary value problem (Problem R-H) and the oblique derivative problem (Problem P) for Eq. (5) in the unit disk G: |z| <1. Problem R-H. We try to find a solution W(z)of Eq. (5) which is continuonsly differentiable on \[G\], and satisfies the boundary conditions: (8) \[\operatorname{Re} [{{\bar z}^{{\chi _1}}},{W_z}] = {r_1}(z),Re[{{\bar z}^{{\chi _2}}}\overline {W(z)} ] = {r_2}(z),z \in \Gamma \]? where \[{\chi _1},{\chi _2}\] are two integers, and \[{r_j} \in C_v^{j - 1}(\Gamma ),j = 1,2,\frac{1}{2} < v < 1\] Problem P. we try to find a solution W(z) of Eq. (5) which is continuously diffierentiabfe on \[\overline G \] and satisfies the boundaory conditions: (9) \[\operatorname{Re} [{{\bar z}^{{\chi _1}}}{W_z}] = {r_1}(z),Re[{{\bar z}^{{\chi _2}}}\overline {W(z)} ] = {r_2}(z),z \in \Gamma \], Where \[{\chi _1},{\chi _2},{r_1}(z),{r_2}(z)\] are the same as in (8), but \[{r_2}(z) \in {C_v}(\Gamma )\]. Theorem II. Suppose that Eq. (5) satisfies the condition C and the constants \[q_0^'\] and K1 are adequately small; then the solvability of Problem R-H is as follows: 1) When \[{\chi _1} \geqslant 0,{\chi _2} \geqslant 0\] Problem R-H is solvable; 2) When \[{\chi _1} < 0,{\chi _2} \geqslant 0(or{\kern 1pt} {\kern 1pt} {\chi _1} \geqslant 0,{\chi _2} < 0){\kern 1pt} \] there are \[2|{\chi _1}| - 1(or2|{\chi _2}| - 1)\] solvable conditions for Problem R-H; 3) WHen \[{\chi _1} < 0,{\chi _2} < 0\], there are \[2(|{\chi _1}| + |{\chi _2}| - 1)\] solvable conditions for Problem R-H. Theorem III Let Eq (5) satisf the condition C and the constants \[q_0^'\] and \[{K_1}\] are adequately small, then tbe solvability of Problem P is as follows: 1) When \[{\chi _1} \geqslant 0,{\chi _2} \geqslant 0\] Problem P is solvable; 2) When \[{\chi _1} < 0,{\chi _2} \geqslant 0(or{\kern 1pt} {\kern 1pt} {\chi _1} \geqslant 0,{\chi _2} < 0){\kern 1pt} {\kern 1pt} {\kern 1pt} \], there are \[2|{\chi _1}| - 1(or2|{\chi _2}| - 1)\] solvable conditions for Problem P; 3) When \[{\chi _1} < 0,{\chi _2} < 0\]; there are \[2|{\chi _1}|{\text{ + }}|{\chi _2}| - 1)\] solvable conditions for Problem P. Furthermore, the solution W(z) of Problem P for Eq. (5) may be expressed as \[{g_j}(\xi ,z) = \left\{ \begin{gathered} \int_0^z {\frac{{{z^{2{\chi _j} + 1}}}}{{1 - \bar \xi z}}dz,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} for{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\chi _j} \geqslant 0} \hfill \ \int_0^z {\frac{{{\xi ^{ - 2{\chi _j} - 1}}}}{{1 - \bar \xi z}}dz,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} for{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\chi _j} < 0} \hfill \\ \end{gathered} \right.j = 1,2\] where \[{\Phi _0}(z) = a + ib\] is a complex constant,and \[{\Phi _1}(z),{\Phi _2}(z)\] are two analytic functions. The proofs of the above stated theorems are based on a prior estimates for the bounded solutes of these boundary value problems and Leray-Schander theorem. Besides, we have considered also the solvability of Problem R-H and Problem P for Eq. (6) in the multiply connected domain.  相似文献   

9.
假设总体$X$服从两点均匀分布, 即$\pr(X=x_1)=\pr(X=x_2)=1/2$, 但是随机变量$X$的取值$x_1$和$x_2$是未知的\bd 在区间截断的情况下, 利用样本获得了$x_1$和$x_2$估计量$\wh{x}_1$和$\wh{x}_2$, 并给出了估计量$\wh{x}_1$和$\wh{x}_2$的收敛速度$o(n^{-1/3+\xs})$.  相似文献   

10.
本文讨论下面一类分数阶微分方程多点边值问题 $$\align &D^{\alpha}_{0+}u(t) = f(t, u(t),~D^{\alpha-1}_{0+}u(t), D^{\alpha-2}_{0+}u(t), D^{\alpha-3}_{0+}u(t)),~~t\in(0,1), \\&I^{4-\alpha}_{0+}u(0) = 0, ~D^{\alpha-1}_{0+}u(0)=\displaystyle{\sum_{i=1}^{m}}\alpha_{i}D^{\alpha-1}_{0+}u(\xi_{i}),\\&D^{\alpha-2}_{0+}u(1)=\sum\limits_ {j=1}^{n}\beta_{j} D^{\alpha-2}_{0+}u(\eta_{j}),~D^{\alpha-3}_{0+}u(1)-D^{\alpha-3}_{0+}u(0)=D^{\alpha-2}_{0+}u(\frac{1}{2}),\endalign$$其中$3<\alpha \leq 4$是一个实数.通过应用Mawhin重合度理论和构建适当的算子,得到了该边值问题解的存在性结果.  相似文献   

11.
Let ${\cal T}_X$ be the full transformation semigroup on the set $X$, \[ T_{E}(X)=\{f\in {\cal T}_X\colon \ \forall(a,b)\in E,(f(a),f(b))\in E\} \] be the subsemigroup of ${\cal T}_X$ determined by an equivalence $E$ on $X$. In this paper the set $X$ under consideration is a totally ordered set with $mn$ points where $m\geq 2$ and $n\geq 3$. The equivalence $E$ has $m$ classes each of which contains $n$ consecutive points. The set of all order preserving transformations in $T_{E}(X)$ forms a subsemigroup of $T_E(X)$ denoted by \[ {\cal O}_{E}(X)=\{f\in T_{E}(X)\colon \ \forall\, x, y\in X, \ x\leq y \mbox{ implies } f(x)\leq f(y)\}. \] The nature of regular elements in ${\cal O}_{E}(X)$ is described and the Green's equivalences on ${\cal O}_{E}(X)$ are characterized completely.  相似文献   

12.
A generalized derivation , is defined by the formula , where and is the Banach algebra of bounded linear operators in a Hilbert space . Sufficient conditions under which and are given. Bibliography: 8 titles. Translated fromProblemy Matematicheskogo Analiza, No. 20, 2000, pp. 111–119.  相似文献   

13.
设X(t)(t∈R )是一个d维非退化扩散过程.本文得到了比原有结果更一般的非退化扩散过程极性的充分条件,证明了对任意u∈Rd,紧集E(0, ∞),有若d=1,则对任意紧集F(?)R, 若d≥2,则对任意紧集E ∈(0, ∞), 其中B(Rd)为Rd上的Borel σ-代数,dim和Dim分别表示Hausdorff维数和Packing 维数.  相似文献   

14.
In this note we define a new topology on C(X),the set of all real-valued continuous functions on a Tychonoff space X.The new topology on C(X) is the topology having subbase open sets of both kinds:[f,C,ε[={g E C(X):|f(x)-g(x)| ε for every x∈C} and[U,r]~-={g∈C(X):g~(-1)(r)∩U≠φ},where f∈C(X),C∈KC(X)={nonempty compact subsets of X},ε 0,while U is an open subset of X and r∈R.The space C(X) equipped with the new topology T_(kh) which is stated above is denoted by C_(kh)(X).Denote X_0={x∈X:x is an isolated point of X} and X_c={x∈X:x has a compact neighborhood in X}.We show that if X is a Tychonoff space such that X_0=X_c,then the following statements are equivalent:(1) X_0 is G_δ-dense in X;(2) C_(kh)(X) is regular;(3) C_(kh)(X) is Tychonoff;(4) C_(kh)(X) is a topological group.We also show that if X is a Tychonoff space such that X_0=X_c and C_(kh)(X) is regular space with countable pseudocharacter,then X is σ-compact.If X is a metrizable hemicompact countable space,then C_(kh)(X) is first countable.  相似文献   

15.
关于有限群的S-半置换子群   总被引:1,自引:0,他引:1  
Let d be the smallest generator number of a finite p-group P and let Md(P) = {P1,...,Pd} be a set of maximal subgroups of P such that ∩di=1 Pi = Φ(P). In this paper, we study the structure of a finite group G under the assumption that every member in Md(Gp) is S-semipermutable in G for each prime divisor p of |G| and a Sylow p-subgroup Gp of G.  相似文献   

16.
本文利用差方法对自反MD设计SCMD$(4mp, p,1)$的存在性给出了构造性证明, 这里$p$为奇素数, $m$为正整数.  相似文献   

17.
Let =(A C X B)be a 2×2 operator matrix acting on the Hilbert space н( )κ.For given A ∈B (H),B ∈B(K)and C ∈B(K,H)the set Ux∈B(H,к)σe(Mx)is determined,where σe(T)denotes the essential spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号