首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary. In this paper, we derive quasi-norm a priori and a posteriori error estimates for the Crouzeix-Raviart type finite element approximation of the p-Laplacian. Sharper a priori upper error bounds are obtained. For instance, for sufficiently regular solutions we prove optimal a priori error bounds on the discretization error in an energy norm when . We also show that the new a posteriori error estimates provide improved upper and lower bounds on the discretization error. For sufficiently regular solutions, the a posteriori error estimates are further shown to be equivalent on the discretization error in a quasi-norm. Received January 25, 1999 / Revised version received June 5, 2000 Published online March 20, 2001  相似文献   

2.
In this work, the numerical approximation of a viscoelastic problem is studied. A fully discrete scheme is introduced by using the finite element method to approximate the spatial variable and an Euler scheme to discretize time derivatives. Then, two numerical analyses are presented. First, a priori estimates are proved from which the linear convergence of the algorithm is derived under suitable regularity conditions. Secondly, an a posteriori error analysis is provided extending some preliminary results obtained in the study of the heat equation. Upper and lower error bounds are obtained.  相似文献   

3.
In this work, a contact problem between a linear elastic material and a deformable obstacle is numerically analyzed. The contact is modeled using the well-known normal compliance contact condition. The weak formulation leads to a nonlinear variational equation which is approximated by using the finite element method. A priori error estimates are recalled. Then, we define an a posteriori error estimator of residual type to evaluate the accuracy of the finite element approximation of the problem. Upper and lower bounds of the discretization error are proved for this estimator.  相似文献   

4.
In this work, the numerical approximation of a viscoelastic contact problem is studied. The classical Kelvin-Voigt constitutive law is employed, and contact is assumed with a deformable obstacle and modelled using the normal compliance condition. The variational formulation leads to a nonlinear parabolic variational equation. An existence and uniqueness result is recalled. Then, a fully discrete scheme is introduced, by using the finite element method to approximate the spatial variable and the implicit Euler scheme to discretize time derivatives. A priori error estimates recently proved for this problem are recalled. Then, an a posteriori error analysis is provided, extending some preliminary results obtained in the study of the heat equation and other parabolic equations. Upper and lower error bounds are proved. Finally, some numerical experiments are presented to demonstrate the accuracy and the numerical behaviour of the error estimates.  相似文献   

5.
The Cahn-Hilliard equation is modeled to describe the dynamics of phase separation in glass and polymer systems. A priori error estimates for the Cahn-Hilliard equation have been studied by the authors. In order to control accuracy of approximate solutions, a posteriori error estimation of the Cahn-Hilliard equation is obtained by discontinuous Galerkin method.  相似文献   

6.
In this paper, we discuss with guaranteed a priori and a posteriori error estimates of finite element approximations for not necessarily coercive linear second order Dirichlet problems. Here, ‘guaranteed’ means we can get the error bounds in which all constants included are explicitly given or represented as a numerically computable form. Using the invertibility condition of concerning elliptic operator, guaranteed a priori and a posteriori error estimates are formulated. This kind of estimates plays essential and important roles in the numerical verification of solutions for nonlinear elliptic problems. Several numerical examples that confirm the actual effectiveness of the method are presented.  相似文献   

7.
We present convergence analysis of operator splitting methods applied to the nonlinear Rosenau–Burgers equation. The equation is first splitted into an unbounded linear part and a bounded nonlinear part and then operator splitting methods of Lie‐Trotter and Strang type are applied to the equation. The local error bounds are obtained by using an approach based on the differential theory of operators in Banach space and error terms of one and two‐dimensional numerical quadratures via Lie commutator bounds. The global error estimates are obtained via a Lady Windermere's fan argument. Lastly, a numerical example is studied to confirm the expected convergence order.  相似文献   

8.
This article discusses a priori and a posteriori error estimates of discontinuous Galerkin finite element method for optimal control problem governed by the transport equation. We use variational discretization concept to discretize the control variable and discontinuous piecewise linear finite elements to approximate the state and costate variable. Based on the error estimates of discontinuous Galerkin finite element method for the transport equation, we get a priori and a posteriori error estimates for the transport equation optimal control problem. Finally, two numerical experiments are carried out to confirm the theoretical analysis.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1493–1512, 2017  相似文献   

9.
In this paper, we investigate the a priori and a posteriori error estimates for the discontinuous Galerkin finite element approximation to a regularization version of the variational inequality of the second kind. We show the optimal error estimates in the DG-norm (stronger than the H1 norm) and the L2 norm, respectively. Furthermore, some residual-based a posteriori error estimators are established which provide global upper bounds and local lower bounds on the discretization error. These a posteriori analysis results can be applied to develop the adaptive DG methods.  相似文献   

10.
We describe a method to estimate the guaranteed error bounds of the finite element solutions for the Stokes problem in mathematically rigorous sense. We show that an a posteriori error can be computed by using the numerical estimates of a constant related to the so-called inf-sup condition for the continuous problem. Also a method to derive the constructive a priori error bounds are considered. Some numerical examples which confirm us the expected rate of convergence are presented.  相似文献   

11.
We derive optimal order a posteriori error estimates for time discretizations by both the Crank-Nicolson and the Crank-Nicolson-Galerkin methods for linear and nonlinear parabolic equations. We examine both smooth and rough initial data. Our basic tool for deriving a posteriori estimates are second-order Crank-Nicolson reconstructions of the piecewise linear approximate solutions. These functions satisfy two fundamental properties: (i) they are explicitly computable and thus their difference to the numerical solution is controlled a posteriori, and (ii) they lead to optimal order residuals as well as to appropriate pointwise representations of the error equation of the same form as the underlying evolution equation. The resulting estimators are shown to be of optimal order by deriving upper and lower bounds for them depending only on the discretization parameters and the data of our problem. As a consequence we provide alternative proofs for known a priori rates of convergence for the Crank-Nicolson method.

  相似文献   


12.
A comparative study of aggregation error bounds for the generalized transportation problem is presented. A priori and a posteriori error bounds were derived and a computational study was performed to (a) test the correlation between the a priori, the a posteriori, and the actual error and (b) quantify the difference of the error bounds from the actual error. Based on the results we conclude that calculating the a priori error bound can be considered as a useful strategy to select the appropriate aggregation level. The a posteriori error bound provides a good quantitative measure of the actual error.  相似文献   

13.
We consider a variational procedure for approximating the solution of the state regulator problem with time delay. Motivated by a dual formulation of the problem, we introduce a positive-definite functionalF over a certain energy space of Mikhlin and obtain approximating solutions by the Ritz-Trefftz idea of minimizing it over finite-dimensional subspaces. The resulting approximating solutions, in turn, furnish suboptimal solutions which converge to the optimal solution of the regulator problem with time delay. A priori error bounds in terms of splines are given. A posteriori error bounds are also obtained.  相似文献   

14.
Summary. Generalizing an idea from deterministic optimal control, we construct a posteriori error estimates for the spatial discretization error of the stochastic dynamic programming method based on a discrete Hamilton–Jacobi–Bellman equation. These error estimates are shown to be efficient and reliable, furthermore, a priori bounds on the estimates depending on the regularity of the approximate solution are derived. Based on these error estimates we propose an adaptive space discretization scheme whose performance is illustrated by two numerical examples.Mathematics Subject Classification (2000): 93E20, 65N50, 49L20, 49M25, 65N15Acknowledgments. This research was supported by the Center for Empirical Macroeconomics, University of Bielefeld. The support is gratefully acknowledged. I would also like to thank an anonymous referee who suggested several improvements for the paper.  相似文献   

15.
In this paper, we consider the a posteriori error analysis of discontinuous Galerkin finite element methods for the steady and nonsteady first order hyperbolic problems with inflow boundary conditions. We establish several residual-based a posteriori error estimators which provide global upper bounds and a local lower bound on the error. Further, for nonsteady problem, we construct a fully discrete discontinuous finite element scheme and derive the a posteriori error estimators which yield global upper bound on the error in time and space. Our a posteriori error analysis is based on the mesh-dependent a priori estimates for the first order hyperbolic problems. These a posteriori error analysis results can be applied to develop the adaptive discontinuous finite element methods.  相似文献   

16.
Summary. A posteriori error estimators of residual type are derived for piecewise linear finite element approximations to elliptic obstacle problems. An instrumental ingredient is a new interpolation operator which requires minimal regularity, exhibits optimal approximation properties and preserves positivity. Both upper and lower bounds are proved and their optimality is explored with several examples. Sharp a priori bounds for the a posteriori estimators are given, and extensions of the results to double obstacle problems are briefly discussed. Received June 19, 1998 / Published online December 6, 1999  相似文献   

17.
In this paper, we study an edge-stabilization Galerkin approximation scheme for the constrained optimal-control problem governed by convection-dominated diffusion equation. The method uses least-square stabilization of the gradient jumps across element edges. A priori and a posteriori error estimates are derived for both the state, co-state and the control. The theoretical results are illustrated by two numerical experiments.  相似文献   

18.
Mixed finite element methods are applied to a fourth order reaction diffusion equation with different types of boundary conditions. Some a priori bounds are established with the help of Lyapunov functional. The semidiscrete schemes are derived using C0‐piecewise linear finite elements in spatial direction and error estimates are obtained. The semidiscrete problem is then discretized in the temporal direction using backward Euler method and the wellposedness of the completely discrete scheme is discussed. Finally, a priori error estimates are established. While deriving a priori error estimates, Gronwall's lemma is applied and the constants involved in the error bounds do not depend exponentially on $\frac{1}{\gamma}$, where γ is a parameter appeared in the fourth order derivative. © 2011Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2012  相似文献   

19.
In this paper, we present a posteriori error analysis for the nonconforming Morley element of the fourth order elliptic equation. We propose a new residual-based a posteriori error estimator and prove its reliability and efficiency. These results refine those of Beirao da Veiga et al. (Numer Math 106:165–179, 2007) by dropping two edge jump terms in both the energy norm of the error and the estimator, and those of Wang and Zhang (Local a priori and a posteriori error estimates of finite elements for biharmonic equation, Research Report, 13, 2006) by showing the efficiency in the sense of Verfürth (A review of a posteriori error estimation and adaptive mesh-refinement techniques, Wiley-Teubner, New York, 1996). Moreover, the normal component in the estimators of Beirao da Veiga et al. (Numer Math 106:165–179, 2007) and Wang and Zhang (Local a priori and a posteriori error estimates of finite elements for biharmonic equation, Research Report, 13, 2006) is dropped, and therefore only the tangential component of the stress on each edge comes into the estimator. In addition, we generalize these results to three dimensional case.  相似文献   

20.
We present constructive a posteriori estimates of inverse operators for initial value problems in linear ordinary differential equations (ODEs) on a bounded interval. Here, “constructive” indicates that we can obtain bounds of the operator norm in which all constants are explicitly given or are represented in a numerically computable form. In general, it is difficult to estimate these inverse operators a priori. We, therefore, propose a technique for obtaining a posteriori estimates by using Galerkin approximation of inverse operators. This type of estimation will play an important role in the numerical verification of solutions for initial value problems in nonlinear ODEs as well as for parabolic initial boundary value problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号