首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 706 毫秒
1.
This paper deals with two parabolic initial-boundary value problems in multidimensional domain. The first problem describes the situation where the spherical medium is static and the nonlinear reaction takes place only at a single point. We show that under some conditions, the solution blows up in finite time and the blow-up set is the whole spherical medium. When the spherical medium is allowed to move in a special space, we investigate another parabolic initial-boundary value problem. It is proved that the blow-up can be avoided if the acceleration of the motion satisfies certain conditions.  相似文献   

2.
The initial-boundary value problem of determining the electromagnetic field in an inhomogeneous conducting sample and the surrounding external medium is solved under certain assumptions on the sample, the external medium, and the external current density. The existence of a classical solution to this problem is proved. The electromagnetic field under small variations in the sample’s electric conductivity is computed by applying perturbation theory.  相似文献   

3.
In this paper we discuss the question of identifying the radially dependent coefficient a(r) in the elliptic equation div(a(r) ▽u)=0 in the unit disk by Dirichlet and Neumann data.We establish a condition to guarantee the uniqueness of this determination. One of the applications of this study is the determination of the radially dependent conductivity coefficient of layered medium.  相似文献   

4.
The nonlinear inverse problem for a wave equation is investigated in a three-dimensional bounded domain subject to the Dirichlet boundary condition. Given a family of solutions to the equation defined on a closed surface within the original domain, it is required to reconstruct the coefficient determining the velocity of sound in the medium. The solutions used for this purpose correspond to the acoustic medium perturbations localized in the neighborhood of a certain closed surface. The inverse problem is reduced to a linear integral equation of the first kind, and the uniqueness of the solution to this equation is established. Numerical results are presented.  相似文献   

5.
The interior transmission problem appears naturally in the study of the inverse scattering problem of determining the shape of a penetrable medium from a knowledge of the time harmonic incident waves and the far field patterns of the scattered waves. We propose a variational study of this problem in the case of Maxwell's equations in an inhomogeneous anisotropic medium. Then we apply the obtained results to build an ‘extented far field’ operator and give a characterization of the medium from the knowledge of the range of this operator. We then show how the linear sampling method can be viewed as an approximation of this characterization. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Scattering of monochromatic waves on an isolated inhomogeneity (inclusion) in an infinite poroelastic medium is considered. Wave propagation in the medium and the inclusion are described by Biot's equations of poroelasticity. The problem is reduced to 3D‐integro‐differential equations for displacement and pressure fields in the region occupied by the inclusion. Properties of the integral operators in these equations are studied. Discontinuities of the fields on the inclusion boundary are indicated. The case of a thin inclusion with low permeability is considered. The corresponding scattering problem is reduced to a 2D integral equation on the middle surface of the inclusion. The unknown function in this equation is the pressure jump in the transverse direction to the inclusion middle surface. An inclusion with a thin layer of low permeability on its interface is considered. The appropriate boundary conditions on the inclusion interface are pointed out. Methods of numerical solution of the volume integral equations of the scattering problems of poroelasticity are discussed.  相似文献   

7.
We propose a structure-preserving doubling algorithm for a quadratic eigenvalue problem arising from the stability analysis of time-delay systems. We are particularly interested in the eigenvalues on the unit circle, which are difficult to estimate. The convergence and backward error of the algorithm are analyzed and three numerical examples are presented. Our experience shows that our algorithm is efficient in comparison to the few existing approaches for small to medium size problems.  相似文献   

8.
A hybrid method for solving inverse boundary problems is presented. The method consists in combining the genetic algorithms with a new system of integral equations. The effectiveness of the general idea of the method and its practical application are tested in the identification of material constants for a two-dimensional anisotropic medium.  相似文献   

9.
We consider the numerical solution, in a three-dimensional bounded domain, of the inverse problem for identifying the location of small electromagnetic imperfections in a medium with homogeneous background. Our numerical algorithm is based on the coupling of a discontinuous Galerkin method for the time-dependent Maxwell's equations, on the exact controllability method and on a Fourier inversion. Several numerical results are given with one and two imperfections and the robustness and accuracy of the numerical method used for the dynamic detection problem are shown.  相似文献   

10.
We consider the interior transmission problem when the inhomogeneous medium has a cavity region. In this case we establish the Fredholm property for this problem and show that there does not exist a transmission eigenvalue under a new condition.  相似文献   

11.
Inverse (time-reverse) simulation of three-dimensional thermoconvective flows is considered for a highly viscous incompressible fluid with temperature-dependent density and viscosity. The model of the fluid dynamics is described by the Stokes equations, the incompressibility and heat balance equations subject to the appropriate initial and boundary conditions. To solve the problem backward in time, the quasi-reversibility method is applied to the heat balance equation. The numerical solution is based on the introduction of a two-component vector potential for the velocity of the medium, on the application of the finite element method with a special tricubic spline basis for computing this potential, and on the application of the splitting method and the method of characteristics for computing the temperature. The numerical algorithm is designed to be executed on parallel computers. The proposed numerical algorithm is used to reconstruct the evolution of diapiric structures in the Earth’s upper mantle. The computational efficiency of the algorithm is analyzed on the basis of the appropriate functionals of residuals.  相似文献   

12.
The miscible displacement of one incompressible fluid by another in a porous medium is considered in this paper. The concentration is split in a first-order hyberbolic equation and a homogeneous parabolic equation within each lime step. The pressure and Us velocity field is computed by a mixed finite element method. Optimal order estimates are derived for the no diffusion case and the diffusion case.  相似文献   

13.
We consider the propagation of TM-polarized electromagnetic waves in a nonlinear dielectric layer located between two linear media. The nonlinearity in the layer is described by the Kerr law. We reduce the problem to a nonlinear boundary eigenvalue problem for a system of ordinary differential equations. We obtain a dispersion relation and a first approximation for eigenvalues of the problem. We compare the results with those obtained for the case of a linear medium in the layer.  相似文献   

14.
This paper is devoted to the multiscale analysis of a homogenization inverse problem of the heat exchange law identification, which is governed by parabolic equations with nonlinear transmission conditions in a periodic heterogeneous medium. The aim of this work is to transform this inverse problem with nonlinear transmission conditions into a new one governed by a less complex nonlinear parabolic equation, while preserving the same form and physical properties of the heat exchange law that it will be identified, based on periodic homogenization theory. For this, we reformulate first the encountered homogenization inverse problem to an optimal control one. Then, we study the well-posedness of the state problem using the Leray–Schauder topological degrees and we also check the existence of the solution for the obtained optimal control problem. Finally, using the periodic homogenization theory and priori estimates, with justified choise of test functions, we reduce our inverse problem to a less complex one in a homogeneous medium.  相似文献   

15.
In this paper, we study the limit as of changing sign solutions of the porous medium equation: in a domain of , with Dirichlet boundary condition.  相似文献   

16.
We consider an inverse acoustic scattering problem for identifying a non-convex penetrable obstacle in three dimensions in a homogeneous medium. We apply the complex geometrical optics solutions with logarithmic phase, which is called complex spherical waves, to reconstruction problem. The reconstruction schemes will be demonstrated in the last section.  相似文献   

17.
We consider the scattering of time‐harmonic acoustic plane waves by a crack buried in a piecewise homogeneous medium. The integral representation for a solution is obtained in the form of potentials by using Green's formula. The density in potentials satisfies the uniquely solvable Fredholm integral equation. Then we obtain the existence and uniqueness of the solution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
For the equation of wave propagation in the half-space ? + 2 + = {(x, y) ∈ ?2 | y > 0} we consider the problem of determining the speed of wave propagation that depends only on the variable y and the shape of a point impulse source on the boundary of the half-space. We show that, under some assumptions on the shape of the source and the structure of the medium, both unknown functions of one variable are uniquely determined by the displacements of boundary points of the medium. We estimate stability of a solution to the problem.  相似文献   

19.
For a hyperbolic wave equation with some parameter λ, we consider the problem of finding the piecewise constant wave propagation speed and a series of parameters in the conjugation condition. Moreover, the shape is assumed unknown of the impulse point source that excites the oscillation process. We prove that, under certain assumptions on the structure of the medium, its sought parameters are determined uniquely from the displacements of points of the boundary given for two different values of λ. We give an algorithm for solving the problem.  相似文献   

20.
We study the inverse spectral problem in an interior transmission eigenvalue problem. The Cartwright’s theory in value distribution theory gives a connection between the distributional structure of the eigenvalues and the asymptotic behaviours of its defining functional determinants. Given a sufficient quantity of transmission eigenvalues, we prove a uniqueness of the refraction index in inhomogeneous medium as an uniqueness problem in entire function theory. The asymptotically periodical structure of the zero set of the solutions helps to locate infinitely many eigenvalues of infinite degree of freedom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号