首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
An oriented graph is a directed graph without loop and with at most one are be-tween each pair of vertices. Let D be an oriented graph of order n such that the in-degree and outdegree of each vertex is at least k. Jackson proved that if n≤2k 2, andk≥2, D contains a Hamiltonian cycle. In this paper, we show that if n≤2k 3, andk≥3, D contains a Hamiltonian cycle.  相似文献   

2.
The twisted cube TQn is a variant of the hypercube Qn. It has been shown by Chang, Wang and Hsu [Topological properties of twisted cube. Information Science, 113, 147-167 (1999)] that TQn contains a cycle of every length from 4 to 2^n. In this paper, we improve this result by showing that every edge of TQn lies on a cycle of every length from 4 to 2^n inclusive. We also show that the twisted cube are Hamiltonian connected.  相似文献   

3.
In this paper, we study the enhanced hypercube, an attractive variant of the hypercube and obtained by adding some complementary edges from a hypercube, and focus on cycles embedding on the enhanced hypercube with faulty vertices. Let Fu be the set of faulty vertices in the n-dimensional enhanced hypercube Qn,k (n ≥ 3, 1 ≤ k 〈≤n - 1). When IFvl = 2, we showed that Qn,k - Fv contains a fault-free cycle of every even length from 4 to 2n - 4 where n (n ≥ 3) and k have the same parity; and contains a fault-free cycle of every even length from 4 to 2n - 4, simultaneously, contains a cycle of every odd length from n-k + 2 to 2^n-3 where n (≥ 3) and k have the different parity. Furthermore, when |Fv| = fv ≤ n - 2, we prove that there exists the longest fault-free cycle, which is of even length 2^n - 2fv whether n (n ≥ 3) and k have the same parity or not; and there exists the longest fault-free cycle, which is of odd length 2^n - 2fv + 1 in Qn,k - Fv where n (≥ 3) and k have the different parity.  相似文献   

4.
A weighted graph is one in which every edge e is assigned a nonnegative number, called the weight of e. The sum of the weights of the edges incident with a vertex v is called the weighted degree of v, denoted by dw(v). The weight of a cycle is defined as the sum of the weights of its edges. Fujisawa proved that if G is a 2-connected triangle-free weighted graph such that the minimum weighted degree of G is at least d, then G contains a cycle of weight at least 2d. In this paper, we proved that if G is a2-connected triangle-free weighted graph of even size such that dw(u) + dw(v) ≥ 2d holds for any pair of nonadjacent vertices u, v ∈ V(G), then G contains a cycle of weight at least 2d.  相似文献   

5.
A set D of vertices of a graph G = (V, E) is called a dominating set if every vertex of V not in D is adjacent to a vertex of D. In 1996, Reed proved that every graph of order n with minimum degree at least 3 has a dominating set of cardinality at most 3n/8. In this paper we generalize Reed's result. We show that every graph G of order n with minimum degree at least 2 has a dominating set of cardinality at most (3n +IV21)/8, where V2 denotes the set of vertices of degree 2 in G. As an application of the above result, we show that for k ≥ 1, the k-restricted domination number rk (G, γ) ≤ (3n+5k)/8 for all graphs of order n with minimum degree at least 3.  相似文献   

6.
A digraph D is k-ordered if for every sequence S:v 1,v 2,…,v k of k distinct vertices,there exists a cycle C such that C encounters the vertices of S in the specified order.In particular,we say that D is k-ordered hamiltonian if for every sequence S:v 1,v 2,…,v k of k distinct vertices,there exists a hamiltonian cycle C such that the vertices of S are encountered on C in the specified order.In this paper,sufficient conditions for digraphs to be ordered and ordered hamiltonian have been given.  相似文献   

7.
Let T be a tree and f be a continuous map form T into itself.We show mainly in this paper that a point x of T is an ω-limit point of f if and only if every open neighborhood of x in T contains at least nx 1 points of some trajectory,where nx equals the number of connected components of T/{x}.Then,for any open subset Gω(f) in T,there exists a positive integer m=m(G) such that at most m points of any trajectory lie outside G.This result is a generalization of the related result for maps of the interval.  相似文献   

8.
A cyclic edge-cut of a graph G is an edge set, the removal of which separates two cycles. If G has a cyclic edge-cut, then it is called cyclically separable. We call a cyclically separable graph super cyclically edge-connected, in short, super-λc, if the removal of any minimum cyclic edge-cut results in a component which is a shortest cycle. In [Zhang, Z., Wang, B.: Super cyclically edge-connected transitive graphs. J. Combin. Optim., 22, 549-562 (2011)], it is proved that a connected vertex-transitive graph is super-λc if G has minimum degree at least 4 and girth at least 6, and the authors also presented a class of nonsuper-λc graphs which have degree 4 and girth 5. In this paper, a characterization of k (k≥4)-regular vertex-transitive nonsuper-λc graphs of girth 5 is given. Using this, we classify all k (k≥4)-regular nonsuper-λc Cayley graphs of girth 5, and construct the first infinite family of nonsuper-λc vertex-transitive non-Cayley graphs.  相似文献   

9.
A graph G is called quasi-claw-free if it satisfies the property:d(x,y)=2 there exists a vertex u∈N(x)∩N(y)such that N[u]■N[x]∪N[y].In this paper,we show that every 2-connected quasi-claw-free graph of order n with G■F contains a cycle of length at least min{3δ+2,n},where F is a family of graphs.  相似文献   

10.
A graph is 1-planar if it can be drawn on the Euclidean plane so that each edge is crossed by at most one other edge. A proper vertex k-coloring of a graph G is defined as a vertex coloring from a set of k colors such that no two adjacent vertices have the same color. A graph that can be assigned a proper k-coloring is k-colorable. A cycle is a path of edges and vertices wherein a vertex is reachable from itself. A cycle contains k vertices and k edges is a k-cycle. In this paper, it is proved t...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号