首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Optimization》2012,61(9):1119-1132
We present two extensions of Korpelevich's extragradient method for solving the variational inequality problem (VIP) in Euclidean space. In the first extension, we replace the second orthogonal projection onto the feasible set of the VIP in Korpelevich's extragradient method with a specific subgradient projection. The second extension allows projections onto the members of an infinite sequence of subsets which epi-converges to the feasible set of the VIP. We show that in both extensions the convergence of the method is preserved and present directions for further research.  相似文献   

2.
In this paper, using sunny generalized nonexpansive retractions which are different from the metric projection and generalized metric projection in Banach spaces, we present new extragradient and line search algorithms for finding the solution of a J-variational inequality whose constraint set is the common elements of the set of fixed points of a family of generalized nonexpansive mappings and the set of solutions of a pseudomonotone J-equilibrium problem for a J -α-inverse-strongly monotone operator in a Banach space. To prove strong convergence of generated iterates in the extragradient method, we introduce a ? ?-Lipschitz-type condition and assume that the equilibrium bifunction satisfies this condition. This condition is unnecessary when the line search method is used instead of the extragradient method. Using FMINCON optimization toolbox in MATLAB, we give some numerical examples and compare them with several existence results in literature to illustrate the usability of our results.  相似文献   

3.
In this paper, we propose a projection subgradient method for solving some classical variational inequality problem over the set of solutions of mixed variational inequalities. Under the conditions that $T$ is a $\Theta $ -pseudomonotone mapping and $A$ is a $\rho $ -strongly pseudomonotone mapping, we prove the convergence of the algorithm constructed by projection subgradient method. Our algorithm can be applied for instance to some mathematical programs with complementarity constraints.  相似文献   

4.
《Optimization》2012,61(5):981-998
ABSTRACT

In this paper, we introduce several new extragradient-like approximation methods for solving variational inequalities in Hilbert spaces. Our algorithms are based on Tseng's extragradient method, subgradient extragradient method, inertial method, hybrid projection method and shrinking projection method. Strong convergence theorems are established under appropriate conditions. Our results extend and improve some related results in the literature. In addition, the efficiency of our algorithms is shown through numerical examples which are defined by the hybrid projection methods.  相似文献   

5.
Nemirovski’s analysis (SIAM J. Optim. 15:229–251, 2005) indicates that the extragradient method has the O(1/t) convergence rate for variational inequalities with Lipschitz continuous monotone operators. For the same problems, in the last decades, a class of Fejér monotone projection and contraction methods is developed. Until now, only convergence results are available to these projection and contraction methods, though the numerical experiments indicate that they always outperform the extragradient method. The reason is that the former benefits from the ‘optimal’ step size in the contraction sense. In this paper, we prove the convergence rate under a unified conceptual framework, which includes the projection and contraction methods as special cases and thus perfects the theory of the existing projection and contraction methods. Preliminary numerical results demonstrate that the projection and contraction methods converge twice faster than the extragradient method.  相似文献   

6.
In this paper, we proposed a modified extragradient method for solving variational inequalities. The method can be viewed as an extension of the method proposed by He and Liao [Improvement of some projection methods for monotone variational inequalities, J. Optim. Theory Appl. 112 (2002) 111–128], by performing an additional projection step at each iteration and another optimal step length is employed to reach substantial progress in each iteration. We used a self-adaptive technique to adjust parameter ρρ at each iteration. Under certain conditions, the global convergence of the proposed method is proved. Preliminary numerical experiments are included to compare our method with some known methods.  相似文献   

7.
Dual extragradient algorithms extended to equilibrium problems   总被引:1,自引:0,他引:1  
In this paper we propose two iterative schemes for solving equilibrium problems which are called dual extragradient algorithms. In contrast with the primal extragradient methods in Quoc et al. (Optimization 57(6):749–776, 2008) which require to solve two general strongly convex programs at each iteration, the dual extragradient algorithms proposed in this paper only need to solve, at each iteration, one general strongly convex program, one projection problem and one subgradient calculation. Moreover, we provide the worst case complexity bounds of these algorithms, which have not been done in the primal extragradient methods yet. An application to Nash-Cournot equilibrium models of electricity markets is presented and implemented to examine the performance of the proposed algorithms.  相似文献   

8.
In this paper, we introduce an extension of multiple set split variational inequality problem (Censor et al. Numer. Algor. 59, 301–323 2012) to multiple set split equilibrium problem (MSSEP) and propose two new parallel extragradient algorithms for solving MSSEP when the equilibrium bifunctions are Lipschitz-type continuous and pseudo-monotone with respect to their solution sets. By using extragradient method combining with cutting techniques, we obtain algorithms for these problems without using any product space. Under certain conditions on parameters, the iteration sequences generated by the proposed algorithms are proved to be weakly and strongly convergent to a solution of MSSEP. An application to multiple set split variational inequality problems and a numerical example and preliminary computational results are also provided.  相似文献   

9.
The purpose of this paper is to prove that the natural mapping of classical braids to virtual braids is an embedding. The proof does not use any complete invariants of classical braids; it is based on a projection from (colored) virtual braids onto classical braids (which is similar to the projection in [6]); this projection is the identity mapping on the set of classical braids. It is well defined do not only for the group of (colored) virtual braids but also for the quotient group of the group of (colored) virtual braids by the so-called virtualization motion. The idea of this projection is closely related to the notion of parity and the groups Gnk introduced by the author in [3].  相似文献   

10.
《Optimization》2012,61(11):2099-2124
ABSTRACT

In this paper, we propose new subgradient extragradient methods for finding a solution of a strongly monotone equilibrium problem over the solution set of another monotone equilibrium problem which usually is called monotone bilevel equilibrium problem in Hilbert spaces. The first proposed algorithm is based on the subgradient extragradient method presented by Censor et al. [Censor Y, Gibali A, Reich S. The subgradient extragradient method for solving variational inequalities in Hilbert space. J Optim Theory Appl. 2011;148:318–335]. The strong convergence of the algorithm is established under monotone assumptions of the cost bifunctions with Lipschitz-type continuous conditions recently presented by Mastroeni in the auxiliary problem principle. We also present a modification of the algorithm for solving an equilibrium problem, where the constraint domain is the common solution set of another equilibrium problem and a fixed point problem. Several fundamental experiments are provided to illustrate the numerical behaviour of the algorithms and to compare with others.  相似文献   

11.
The subgradient extragradient method can be considered as an improvement of the extragradient method for variational inequality problems for the class of monotone and Lipschitz continuous mappings. In this paper, we propose two new algorithms as combination between the subgradient extragradient method and Mann-like method for finding a common element of the solution set of a variational inequality and the fixed point set of a demicontractive mapping.  相似文献   

12.
In this work we analyze a first order method especially tailored for smooth saddle point problems, based on an alternating extragradient scheme. The proposed method is based on three successive projection steps, which can be computed also with respect to non Euclidean metrics. The stepsize parameter can be adaptively computed, so that the method can be considered as a black-box algorithm for general smooth saddle point problems. We develop the global convergence analysis in the framework of non Euclidean proximal distance functions, under mild local Lipschitz conditions, proving also the \(\mathcal {O}(\frac{1}{k})\) rate of convergence on the primal–dual gap. Finally, we analyze the practical behavior of the method and its effectiveness on some applications arising from different fields.  相似文献   

13.
When we consider surfaces of prescribed mean curvature H with a one-to-one orthogonal projection onto a plane, we have to study the nonparametric H-surface equation. Now the H-surfaces with a one-to-one central projection onto a plane lead to an interesting elliptic differential equation, which has been discovered for the case H = 0 already by T. Radó in 1932. We establish the uniqueness of the Dirichlet problem for this H-surface equation in central projection and develop an estimate for the maximal deviation of large H-surfaces from their boundary values, resembling an inequality by J. Serrin from 1969.We solve the Dirichlet problem for nonvanishing H with compact support via a nonlinear continuity method. Here we introduce conformal parameters into the surface and study the well-known H-surface system. Then we combine these investigations with a differential equation for its unit normal, which has been developed by the author for variable H in 1982. Furthermore, we construct large H-surfaces bounding extreme contours by an approximation.Here we only provide an overview on the relevant proofs; for the more detailed derivations of our results, we refer the readers to the author’s investigations in the Pacific Journal of Mathematics and the Milan Journal of Mathematics.  相似文献   

14.
Locating proximal points is a component of numerous minimization algorithms. This work focuses on developing a method to find the proximal point of a convex function at a point, given an inexact oracle. Our method assumes that exact function values are at hand, but exact subgradients are either not available or not useful. We use approximate subgradients to build a model of the objective function, and prove that the method converges to the true prox-point within acceptable tolerance. The subgradient g k used at each step k is such that the distance from g k to the true subdifferential of the objective function at the current iteration point is bounded by some fixed ε > 0. The algorithm includes a novel tilt-correct step applied to the approximate subgradient.  相似文献   

15.
We prove that the metric projection onto a finite-dimensional subspace Y ? L p, p ∈ (1, 2) ∪ (2, ∞), satisfies the Lipschitz condition if and only if every function in Y is supported on finitely many atoms. We estimate the Lipschitz constant of such a projection for the case in which the subspace is one-dimensional.  相似文献   

16.
Our aim in this paper is to study strong convergence results for L-Lipschitz continuous monotone variational inequality but L is unknown using a combination of subgradient extra-gradient method and viscosity approximation method with adoption of Armijo-like step size rule in infinite dimensional real Hilbert spaces. Our results are obtained under mild conditions on the iterative parameters. We apply our result to nonlinear Hammerstein integral equations and finally provide some numerical experiments to illustrate our proposed algorithm.  相似文献   

17.
The purpose of this paper is to study and analyze three different kinds of Mann type iterative methods for finding a common element of the solution set ?? of the split feasibility problem and the set Fix(S) of fixed points of a nonexpansive mapping S in the setting of infinite-dimensional Hilbert spaces. By combining Mann??s iterative method and the extragradient method, we first propose Mann type extragradient-like algorithm for finding an element of the set ${{{\rm Fix}}(S) \cap \Gamma}$ ; moreover, we derive the weak convergence of the proposed algorithm under appropriate conditions. Second, we combine Mann??s iterative method and the viscosity approximation method to introduce Mann type viscosity algorithm for finding an element of the ${{{\rm Fix}}(S)\cap \Gamma}$ ; moreover, we derive the strong convergence of the sequences generated by the proposed algorithm to an element of set ${{{\rm Fix}}(S) \cap \Gamma}$ under mild conditions. Finally, by combining Mann??s iterative method and the relaxed CQ method, we introduce Mann type relaxed CQ algorithm for finding an element of the set ${{{\rm Fix}}(S)\cap \Gamma}$ . We also establish a weak convergence result for the sequences generated by the proposed Mann type relaxed CQ algorithm under appropriate assumptions.  相似文献   

18.
For \(\alpha , \beta \in L^{\infty } (S^1),\) the singular integral operator \(S_{\alpha ,\beta }\) on \(L^2 (S^1)\) is defined by \(S_{\alpha ,\beta }f:= \alpha Pf+\beta Qf\), where P denotes the orthogonal projection of \(L^2(S^1)\) onto the Hardy space \(H^2(S^1),\) and Q denotes the orthogonal projection onto \(H^2(S^1)^{\perp }\). In a recent paper, Nakazi and Yamamoto have studied the normality and self-adjointness of \(S_{\alpha ,\beta }\). This work has shown that \(S_{\alpha ,\beta }\) may have analogous properties to that of the Toeplitz operator. In this paper, we study several other properties of \(S_{\alpha ,\beta }\).  相似文献   

19.
The purpose of this paper is to investigate the problem of finding a common element of the set of fixed points F(S) of a nonexpansive mapping S and the set of solutions Ω A of the variational inequality for a monotone, Lipschitz continuous mapping A. We introduce a hybrid extragradient-like approximation method which is based on the well-known extragradient method and a hybrid (or outer approximation) method. The method produces three sequences which are shown to converge strongly to the same common element of \({F(S)\cap\Omega_{A}}\). As applications, the method provides an algorithm for finding the common fixed point of a nonexpansive mapping and a pseudocontractive mapping, or a common zero of a monotone Lipschitz continuous mapping and a maximal monotone mapping.  相似文献   

20.
In infinite-dimensional Hilbert spaces, we prove that the iterative sequence generated by the extragradient method for solving pseudo-monotone variational inequalities converges weakly to a solution. A class of pseudo-monotone variational inequalities is considered to illustrate the convergent behavior. The result obtained in this note extends some recent results in the literature; especially, it gives a positive answer to a question raised in Khanh (Acta Math Vietnam 41:251–263, 2016).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号