首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
We study compact, countably compact, pseudocompact, and functionally bounded sets in extensions of topological groups. A property P is said to be a three space property if, for every topological group G and a closed invariant subgroup N of G, the fact that both groups N and G/N have P implies that G also has P. It is shown that if all compact (countably compact) subsets of the groups N and G/N are metrizable, then G has the same property. However, the result cannot be extended to pseudocompact subsets, a counterexample exists under p=c. Another example shows that extensions of groups do not preserve the classes of realcompact, Dieudonné complete and μ-spaces: one can find a pseudocompact, non-compact Abelian topological group G and an infinite, closed, realcompact subgroup N of G such that G/N is compact and all functionally bounded subsets of N are finite. Several examples given in the article destroy a number of tempting conjectures about extensions of topological groups.  相似文献   

2.
We show that every Abelian group satisfying a mild cardinal inequality admits a pseudocompact group topology from which all countable subgroups inherit the maximal totally bounded topology (we say that such a topology satisfies property ).Every pseudocompact Abelian group G with cardinality |G|≤22c satisfies this inequality and therefore admits a pseudocompact group topology with property . Under the Singular Cardinal Hypothesis (SCH) this criterion can be combined with an analysis of the algebraic structure of pseudocompact groups to prove that every pseudocompact Abelian group admits a pseudocompact group topology with property .We also observe that pseudocompact Abelian groups with property contain no infinite compact subsets and are examples of Pontryagin reflexive precompact groups that are not compact.  相似文献   

3.
If a discrete subset S of a topological group G with the identity 1 generates a dense subgroup of G and S∪{1} is closed in G, then S is called a suitable set for G. We apply Michael's selection theorem to offer a direct, self-contained, purely topological proof of the result of Hofmann and Morris [K.-H. Hofmann, S.A. Morris, Weight and c, J. Pure Appl. Algebra 68 (1-2) (1990) 181-194] on the existence of suitable sets in locally compact groups. Our approach uses only elementary facts from (topological) group theory.  相似文献   

4.
We show that every Abelian group G with r0(G)=|G|=|G|ω admits a pseudocompact Hausdorff topological group topology T such that the space (G,T) is Fréchet-Urysohn. We also show that a bounded torsion Abelian group G of exponent n admits a pseudocompact Hausdorff topological group topology making G a Fréchet-Urysohn space if for every prime divisor p of n and every integer k≥0, the Ulm-Kaplansky invariant fp,k of G satisfies (fp,k)ω=fp,k provided that fp,k is infinite and fp,k>fp,i for each i>k.Our approach is based on an appropriate dense embedding of a group G into a Σ-product of circle groups or finite cyclic groups.  相似文献   

5.
A topological Abelian group G is called (strongly) self-dual if there exists a topological isomorphism Φ:GG of G onto the dual group G (such that Φ(x)(y)=Φ(y)(x) for all x,yG). We prove that every countably compact self-dual Abelian group is finite. It turns out, however, that for every infinite cardinal κ with κω=κ, there exists a pseudocompact, non-compact, strongly self-dual Boolean group of cardinality κ.  相似文献   

6.
We study CLP-compact spaces (every cover consisting of clopen sets has a finite subcover) and CLP-compact topological groups. In particular, we extend a theorem on CLP-compactness of products from [J. Steprāns, A. Šostak, Restricted compactness properties and their preservation under products, Topology Appl. 101 (3) (2000) 213-229] and we offer various criteria for CLP-compactness for spaces and topological groups, that work particularly well for precompact groups. This allows us to show that arbitrary products of CLP-compact pseudocompact groups are CLP-compact. For every natural n we construct:
(i)
a totally disconnected, n-dimensional, pseudocompact CLP-compact group; and
(ii)
a hereditarily disconnected, n-dimensional, totally minimal, CLP-compact group that can be chosen to be either separable metrizable or pseudocompact (a Hausdorff group G is totally minimal when all continuous surjective homomorphisms GH, with a Hausdorff group H, are open).
  相似文献   

7.
Let G be a Hausdorff topological group. It is shown that there is a class C of subspaces of G, containing all (but not only) precompact subsets of G, for which the following result holds:Suppose that for every real-valued discontinuous function on G there is a set AC such that the restriction mapping f|A has no continuous extension to G; then the following are equivalent:
(i)
the left and right uniform structures of G are equivalent,
(ii)
every left uniformly continuous bounded real-valued function on G is right uniformly continuous,
(iii)
for every countable set AG and every neighborhood V of the unit e of G, there is a neighborhood U of e in G such that AUVA.
As a consequence, it is proved that items (i), (ii) and (iii) are equivalent for every inframetrizable group. These results generalize earlier ones established by Itzkowitz, Rothman, Strassberg and Wu, by Milnes and by Pestov for locally compact groups, by Protasov for almost metrizable groups, and by Troallic for groups that are quasi-k-spaces.  相似文献   

8.
The hyperspaces of strongly countable dimensional compacta of positive dimension and of strongly countable dimensional continua of dimension greater than 1 in the Hilbert cube are homeomorphic to the Hurewicz set of all nonempty countable closed subsets of the unit interval [0,1]. These facts hold true, in particular, for covering dimension dim and cohomological dimension dimG, where G is any Abelian group.  相似文献   

9.
Let G be a topological group with the identity element e. Given a space X, we denote by Cp(X,G) the group of all continuous functions from X to G endowed with the topology of pointwise convergence, and we say that X is: (a) G-regular if, for each closed set FX and every point xX?F, there exist fCp(X,G) and gG?{e} such that f(x)=g and f(F)⊆{e}; (b) G?-regular provided that there exists gG?{e} such that, for each closed set FX and every point xX?F, one can find fCp(X,G) with f(x)=g and f(F)⊆{e}. Spaces X and Y are G-equivalent provided that the topological groups Cp(X,G) and Cp(Y,G) are topologically isomorphic.We investigate which topological properties are preserved by G-equivalence, with a special emphasis being placed on characterizing topological properties of X in terms of those of Cp(X,G). Since R-equivalence coincides with l-equivalence, this line of research “includes” major topics of the classical Cp-theory of Arhangel'ski? as a particular case (when G=R).We introduce a new class of TAP groups that contains all groups having no small subgroups (NSS groups). We prove that: (i) for a given NSS group G, a G-regular space X is pseudocompact if and only if Cp(X,G) is TAP, and (ii) for a metrizable NSS group G, a G?-regular space X is compact if and only if Cp(X,G) is a TAP group of countable tightness. In particular, a Tychonoff space X is pseudocompact (compact) if and only if Cp(X,R) is a TAP group (of countable tightness). Demonstrating the limits of the result in (i), we give an example of a precompact TAP group G and a G-regular countably compact space X such that Cp(X,G) is not TAP.We show that Tychonoff spaces X and Y are T-equivalent if and only if their free precompact Abelian groups are topologically isomorphic, where T stays for the quotient group R/Z. As a corollary, we obtain that T-equivalence implies G-equivalence for every Abelian precompact group G. We establish that T-equivalence preserves the following topological properties: compactness, pseudocompactness, σ-compactness, the property of being a Lindelöf Σ-space, the property of being a compact metrizable space, the (finite) number of connected components, connectedness, total disconnectedness. An example of R-equivalent (that is, l-equivalent) spaces that are not T-equivalent is constructed.  相似文献   

10.
We introduce the notion of a partially selective ultrafilter and prove that (a) if G is an extremally disconnected topological group and p is a converging nonprincipal ultrafilter on G containing a countable discrete subset, then p is partially selective, and (b) the existence of a nonprincipal partially selective ultrafilter on a countable set implies the existence of a P-point in ω. Thus it is consistent with ZFC that there is no extremally disconnected topological group containing a countable discrete nonclosed subset.  相似文献   

11.
A topological group is said to be ambitable if every uniformly bounded uniformly equicontinuous set of functions on the group with its right uniformity is contained in an ambit. For n=0,1,2,… , every locally n-bounded topological group is either precompact or ambitable. In the familiar semigroups constructed over ambitable groups, topological centres have an effective characterization.  相似文献   

12.
The lattice PC(G) of precompact group topologies on an Abelian group G is isomorphic with the lattice SG(G*) of subgroups of the algebraic character group (Remus, 1983). Remus used this result to determine the number of precompact [Hausdorff] topologies on Abelian groups. In this paper the same tool is applied to the problems of existence and number of maximal precompact [Hausdorff] topologies on an Abelian group G, i.e. antiatoms in the lattice PC(G). It is shown that PC(G) has antiatoms iff G is not torsion-free. Further the number of maximal precompact [Hausdorff] topologies is expressed in terms of the cardinalities of the p-components of the group G.  相似文献   

13.
Tkachenko showed in 1990 the existence of a countably compact group topology on the free Abelian group of size c using CH. Koszmider, Tomita and Watson showed in 2000 the existence of a countably compact group topology on the free Abelian group of size c2 using a forcing model in which CH holds.Wallace's question from 1955, asks whether every both-sided cancellative countably compact semigroup is a topological group. A counterexample to Wallace's question has been called a Wallace semigroup. In 1996, Robbie and Svetlichny constructed a Wallace semigroup under CH. In the same year, Tomita constructed a Wallace semigroup from MAcountable.In this note, we show that the examples of Tkachenko, Robbie and Svetlichny, and Koszmider, Tomita and Watson can be obtained using a family of selective ultrafilters. As a corollary, the constructions presented here are compatible with the total failure of Martin's Axiom.  相似文献   

14.
A topological Abelian group G is Pontryagin reflexive, or P-reflexive for short, if the natural homomorphism of G to its bidual group is a topological isomorphism. We look at the question, set by Kaplan in 1948, of characterizing the topological Abelian groups that are P-reflexive. Thus, we find some conditions on an arbitrary group G that are equivalent to the P-reflexivity of G and give an example that corrects a wrong statement appearing in previously existent characterizations of P-reflexive groups. Received: 10 February 2000 / Published online: 17 May 2001  相似文献   

15.
Let K be a compact convex subset of a separated locally convex space (over R) and let Ap(K) denote the space of all continuous real-valued affine mappings defined on K, endowed with the topology of pointwise convergence on the extreme points of K. In this paper we shall examine some topological properties of Ap(K). For example, we shall consider when Ap(K) is monolithic and when separable compact subsets of Ap(K) are metrizable.  相似文献   

16.
It is shown in this paper that if A is a closed normal subgroup of kω-topological groups G and H, then the free product of G and H with A amalgamated, G1AH, exists, is Hausdorff and indeed a kω-group.  相似文献   

17.
We show that:
(1)
Rothberger bounded subgroups of σ-compact groups are characterized by Ramseyan partition relations (Corollary 4).
(2)
For each uncountable cardinal κ there is a T0 topological group of cardinality κ such that ONE has a winning strategy in the point-open game on the group and the group is not a closed subspace of any σ-compact space (Theorem 8).
(3)
For each uncountable cardinal κ there is a T0 topological group of cardinality κ such that ONE has a winning strategy in the point-open game on the group and the group is σ-compact (Corollary 17).
  相似文献   

18.
In this paper we answer the question of T. Banakh and M. Zarichnyi constructing a copy of the Fréchet-Urysohn fan Sω in a topological group G admitting a functorial embedding [0,1]⊂G. The latter means that each autohomeomorphism of [0,1] extends to a continuous homomorphism of G. This implies that many natural free topological group constructions (e.g. the constructions of the Markov free topological group, free abelian topological group, free totally bounded group, free compact group) applied to a Tychonov space X containing a topological copy of the space Q of rationals give topological groups containing Sω.  相似文献   

19.
We study the duality properties of two rather different classes of subgroups of direct products of discrete groups (protodiscrete groups): P-groups, i.e., topological groups such that countable intersections of its open subsets are open, and protodiscrete groups of countable pseudocharacter (topological groups in which the identity is the intersection of countably many open sets). It was recently shown by the same authors that the direct product Π of an arbitrary family of discrete Abelian groups becomes reflexive when endowed with the ω-box topology. This was the first example of a non-discrete reflexive P-group. Here we present a considerable generalization of this theorem and show that every product of feathered (equivalently, almost metrizable) Abelian groups equipped with the P-modified topology is reflexive. In particular, every locally compact Abelian group with the P-modified topology is reflexive. We also examine the reflexivity of dense subgroups of products Π with the P-modified topology and obtain the first examples of non-complete reflexive P-groups. We find as well that the better behaved class of prodiscrete groups (complete protodiscrete groups) of countable pseudocharacter contains non-reflexive members—any uncountable bounded torsion Abelian group G of cardinality ω2 supports a topology τ such that (G,τ) is a non-reflexive prodiscrete group of countable pseudocharacter.  相似文献   

20.
The θ-closed hull of a set A in a topological space is the smallest set C containing A such that, whenever all closed neighborhoods of a point intersect C, this point is in C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号