首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Grooming uniform all-to-all traffic in optical ring networks with grooming ratio C requires the determination of graph decompositions of the complete graph into subgraphs each having at most C edges. The drop cost of such a grooming is the total number of vertices of nonzero degree in these subgraphs, and the grooming is optimal when the drop cost is minimum. The minimum drop cost is determined for grooming ratio 9. Previously this bound was shown to be met when with two exceptions and eleven additional possible exceptions for n, and also when with one exception and one possible exception for n. In this paper it is shown that the bound is met for all with four exceptions for n∈{8,11,14,17} and one possible exception for n=20. Using this result, it is further shown that when and n is sufficiently large, the bound is also met.  相似文献   

2.
A G‐design of order n is a decomposition of the complete graph on n vertices into edge‐disjoint subgraphs isomorphic to G. Grooming uniform all‐to‐all traffic in optical ring networks with grooming ratio C requires the determination of graph decompositions of the complete graph on n vertices into subgraphs each having at most C edges. The drop cost of such a grooming is the total number of vertices of nonzero degree in these subgraphs, and the grooming is optimal when the drop cost is minimum. The existence spectrum problem of G‐designs for five‐vertex graphs is a long standing problem posed by Bermond, Huang, Rosa and Sotteau in 1980, which is closely related to traffic groomings in optical networks. Although considerable progress has been made over the past 30 years, the existence problems for such G‐designs and their related traffic groomings in optical networks are far from complete. In this paper, we first give a complete solution to this spectrum problem for five‐vertex graphs by eliminating all the undetermined possible exceptions. Then, we determine almost completely the minimum drop cost of 8‐groomings for all orders n by reducing the 37 possible exceptions to 8. Finally, we show the minimum possible drop cost of 9‐groomings for all orders n is realizable with 14 exceptions and 12 possible exceptions.  相似文献   

3.
Grooming uniform all‐to‐all traffic in optical (SONET) rings with grooming ratio C requires the determination of a decomposition of the complete graph into subgraphs each having at most C edges. The drop cost of such a grooming is the total number of vertices of nonzero degree in these subgraphs, and the grooming is optimal when the drop cost is minimum. The determination of optimal C‐groomings has been considered for , and completely solved for . For , it has been shown that the lower bound for the drop cost of an optimal C‐grooming can be attained for almost all orders with 5 exceptions and 308 possible exceptions. For , there are infinitely many unsettled orders; especially the case is far from complete. In this paper, we show that the lower bound for the drop cost of a 6‐grooming can be attained for almost all orders by reducing the 308 possible exceptions to 3, and that the lower bound for the drop cost of a 7‐grooming can be attained for almost all orders with seven exceptions and 16 possible exceptions. Moreover, for the unsettled orders, we give upper bounds for the minimum drop costs.  相似文献   

4.
《Discrete Mathematics》2002,231(1-3):293-300
Harary's edge reconstruction conjecture states that a graph G=(V,E) with at least four edges is uniquely determined by the multiset of its edge-deleted subgraphs, i.e. the graphs of the form Ge for eE. It is well-known that this multiset uniquely determines the degree sequence of a graph with at least four edges. In this note we generalize this result by showing that the degree sequence of a graph with at least four edges is uniquely determined by the set of the degree sequences of its edge-deleted subgraphs with one well-described class of exceptions. Moreover, the multiset of the degree sequences of the edge-deleted subgraphs always allows one to reconstruct the degree sequence of the graph.  相似文献   

5.
We show that if G is a bipartite graph with no induced cycles on exactly 6 vertices, then the minimum number of chain subgraphs of G needed to cover E(G) equals the chromatic number of the complement of the square of line graph of G. Using this, we establish that for a chordal bipartite graph G, the minimum number of chain subgraphs of G needed to cover E(G) equals the size of a largest induced matching in G, and also that a minimum chain subgraph cover can be computed in polynomial time. The problems of computing a minimum chain cover and a largest induced matching are NP-hard for general bipartite graphs. Finally, we show that our results can be used to efficiently compute a minimum chain subgraph cover when the input is an interval bigraph.  相似文献   

6.
A digraph D is connected if the underlying undirected graph of D is connected. A subgraph H of an acyclic digraph D is convex if there is no directed path between vertices of H which contains an arc not in H. We find the minimum and maximum possible number of connected convex subgraphs in a connected acyclic digraph of order n. Connected convex subgraphs of connected acyclic digraphs are of interest in the area of modern embedded processors technology.  相似文献   

7.
A graph is clique-perfect if the cardinality of a maximum clique-independent set equals the cardinality of a minimum clique-transversal, for all its induced subgraphs. A graph G is coordinated if the chromatic number of the clique graph of H equals the maximum number of cliques of H with a common vertex, for every induced subgraph H of G. Coordinated graphs are a subclass of perfect graphs. The complete lists of minimal forbidden induced subgraphs for the classes of cliqueperfect and coordinated graphs are not known, but some partial characterizations have been obtained. In this paper, we characterize clique-perfect and coordinated graphs by minimal forbidden induced subgraphs when the graph is either paw-free or {gem,W4,bull}-free, two superclasses of triangle-free graphs.  相似文献   

8.
We consider the problem of finding a large or dense triangle-free subgraph in a given graph G. In response to a question of P. Erdős, we prove that, if the minimum degree of G is at least 9|V (G)|/10, the largest triangle-free subgraphs are precisely the largest bipartite subgraphs in G. We investigate in particular the case where G is a complete multipartite graph. We prove that a finite tripartite graph with all edge densities greater than the golden ratio has a triangle and that this bound is best possible. Also we show that an infinite-partite graph with finite parts has a triangle, provided that the edge density between any two parts is greater than 1/2.  相似文献   

9.
Approximating the traffic grooming problem   总被引:1,自引:0,他引:1  
The problem of grooming is central in studies of optical networks. In graph-theoretic terms, this can be viewed as assigning colors to the lightpaths so that at most g of them (g being the grooming factor) can share one edge. The cost of a coloring is the number of optical switches (ADMs); each lightpath uses two ADMs, one at each endpoint, and in case g lightpaths of the same wavelength enter through the same edge to one node, they can all use the same ADM (thus saving g−1 ADMs). The goal is to minimize the total number of ADMs. This problem was shown to be NP-complete for g=1 and for a general g. Exact solutions are known for some specific cases, and approximation algorithms for certain topologies exist for g=1. We present an approximation algorithm for this problem. For every value of g the running time of the algorithm is polynomial in the input size, and its approximation ratio for a wide variety of network topologies—including the ring topology—is shown to be 2lng+o(lng). This is the first approximation algorithm for the grooming problem with a general grooming factor g.  相似文献   

10.
If a class C of finite graphs is closed under contraction and forming subgraphs, and if every finite abstract group occurs as the automorphism group of some graph in C, then C contains all finite graphs (up to isomorphism). Also related results concerning automorphism groups of graphs on given surfaces are mentioned.  相似文献   

11.
《Discrete Mathematics》2006,306(19-20):2593-2601
The Hall-ratio of a graph G is the ratio of the number of vertices and the independence number maximized over all subgraphs of G. We investigate asymptotic values of the Hall-ratio with respect to different graph powers.  相似文献   

12.
A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. The clique-transversal number and clique-independence number of G are the sizes of a minimum clique-transversal and a maximum clique-independent set of G, respectively. A graph G is clique-perfect if these two numbers are equal for every induced subgraph of G. The list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is not known. In this paper, we present a partial result in this direction; that is, we characterize clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph belongs to two different subclasses of claw-free graphs.  相似文献   

13.
It is shown that the number of Clar formulas of a Kekuléan benzenoid system B is equal to the number of subgraphs of the resonance graph of B isomorphic to the Cl(B)-dimensional hypercube, where Cl(B) is the Clar number of B.  相似文献   

14.
A class F of graphs characterized by three forbidden subgraphs C, A, N is considered; C is the claw (the unique graph with degree sequence (1, 1, 1, 3)), A is the antenna (a graph with degree sequence (1, 2, 2, 3, 3, 3) which does not contain C), and N is the net (the unique graph with degree sequence (1, 1, 1, 3, 3, 3)). These graphs are called CAN-free. A construction is described which associates with every CAN-free graph G another CAN-free graph G′ with strictly fewer nodes than G and with stbility number α(G′) = α(G) ? 1. This gives a good algorithm for determining the stability number of CAN-free graphs.  相似文献   

15.
The strong cycle double cover conjecture states that for every circuit C of a bridgeless cubic graph G, there is a cycle double cover of G which contains C. We conjecture that there is even a 5-cycle double cover S of G which contains C, i.e. C is a subgraph of one of the five 2-regular subgraphs of S. We prove a necessary and sufficient condition for a 2-regular subgraph to be contained in a 5-cycle double cover of G.  相似文献   

16.
The clique-transversal number τc(G) of a graph G is the minimum size of a set of vertices meeting all the cliques. The clique-independence number αc(G) of G is the maximum size of a collection of vertex-disjoint cliques. A graph is clique-perfect if these two numbers are equal for every induced subgraph of G. Unlike perfect graphs, the class of clique-perfect graphs is not closed under graph complementation nor is a characterization by forbidden induced subgraphs known. Nevertheless, partial results in this direction have been obtained. For instance, in [Bonomo, F., M. Chudnovsky and G. Durán, Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs, Discrete Appl. Math. 156 (2008), pp. 1058–1082], a characterization of those line graphs that are clique-perfect is given in terms of minimal forbidden induced subgraphs. Our main result is a characterization of those complements of line graphs that are clique-perfect, also by means of minimal forbidden induced subgraphs. This implies an O(n2) time algorithm for deciding the clique-perfectness of complements of line graphs and, for those that are clique-perfect, finding αc and τc.  相似文献   

17.
Let C be the class of triangle-free graphs with maximum degree four. A lower bound for the number of edges in a graph of C is derived in terms of its order p and independence β. Also a characterization of certain minimum independence graphs in C is provided. Let r(k) be the smallest integer such that every graph in C with at least r(k) vertices has independence at least k. The values of r(k) for all k may be derived from our main theorem and 413 obtained as the best possible lower bound for the independence ratio βp of graphs in C.  相似文献   

18.
Chordal graphs were characterized as those graphs having a tree, called clique tree, whose vertices are the cliques of the graph and for every vertex in the graph, the set of cliques that contain it form a subtree of clique tree. In this work, we study the relationship between the clique trees of a chordal graph and its subgraphs. We will prove that clique trees can be described locally and all clique trees of a graph can be obtained from clique trees of subgraphs. In particular, we study the leafage of chordal graphs, that is the minimum number of leaves among the clique trees of the graph. It is known that interval graphs are chordal graphs without 3-asteroidals. We will prove a generalization of this result using the framework developed in the present article. We prove that in a clique tree that realizes the leafage, for every vertex of degree at least 3, and every choice of 3 branches incident to it, there is a 3asteroidal in these branches.  相似文献   

19.
20.
A matroidal family C is defined to be a collection of graphs such that, for any given graph G, the subgraphs of G isomorphic to a graph in C satisfy the matroid circuit-axioms. Here matroidal families closed under homeomorphism are considered. A theorem of Simöes-Pereira shows that when only finite connected graphs are allowed as members of C, two matroids arise: the cycle matroid and bicircular matroid. Here this theorem is generalized in two directions: the graphs are allowed to be infinite, and they are allowed to be disconnected. In the first case four structures result and in the second case two infinite families of matroids are obtained. The main theorem concerns the structures resulting when both restrictions are relaxed simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号