首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
An algorithm is offered, which with insignificant modifications permits; 1) the finding of a canonic basis of the root sub space corresponding to a prescribed eigenvalue of a matrix; 2) the finding of chains of associated vectors to the eigenvectors corresponding to a prescribed eigenvalue of a regular linear pencil; 3) the finding of chains of generalized associated vectors corresponding to a prescribed eigenvalue of a regular kernel of a singular linear pencil of complete column rank of two matrices; 4) the finding of linearly independent polynomial solutions of a singular linear pencil. The algorithm consists in the construction of a finite sequence of certain auxiliary matrices the choice of which depends on the problem being solved and in the construction of a sequence of their null-spaces, enabling the obtaining of all necessary information on the unknown vectors of the canonic basis of the problem being solved.Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR, Vol. 90, pp. 46–62, 1979.  相似文献   

2.
In this paper, multiparameter eigenvalue (MPE) problems for matrices are considered. The notion of Jordan vector semilattices as a generalization of the notion of Jordan vector chains is introduced for a multiple spectrum point of disconnected MPE problems. The notion of generating vector is introduced. For the linear case, a special form of equations determining Jordan vector semilattices is presented. The above notions are extended to the case of connected MPE problems, including linear ones. The relationship between the Jordan vector semilattices of a connected linear MPE problem and the Jordan vector chains of the corresponding simultaneous spectral problems for matrices is established. Bibliography: 5 titles. Translated fromZapiski Nauchnykh Seminarov POMI, Vol. 219, 1994, pp. 213–220. This paper was supported by the Russian Foundation of Fundamental Research (grant 94-01-00919). Translated by V. B. Khazanov.  相似文献   

3.
A detailed investigation is carried out into the problem of parametric oscillations when there is linear dissipation. Using constructive numerical-analytical methods, the boundaries of the domains of stability are constructed for a wide range of variation of the parameters, that is, the modulation factor and the friction coefficient. By solving non-self-adjoint eigenvalue and eigenfunction problems, the phase vectors of the three lower oscillation modes are determined and the principal features of the behaviour of the boundaries when the linear friction coefficient is varied are established. The eigenvalues and eigenfunctions of the adjoint boundary value problem are found. A complete biorthogonal system is constructed and its functional properties are determined. Modified expressions are obtained for scalar products and the squares of the norms of the characteristic phase vectors.  相似文献   

4.
A Robin type boundary condition with a sign-changing coefficient is treated. First, the associated linear elliptic eigenvalue problem is studied, where the existence of a principal eigenvalue is discussed by the use of a variational approach. Second, the associated semilinear elliptic boundary value problem of logistic type is studied and the one parameter-dependent structure of positive solutions is investigated, where results obtained are due to the construction of suitable super- and subsolutions by using the principal positive eigenfunctions of the linear eigenvalue problem.  相似文献   

5.
In the case of a general nonlinear self-adjoint spectral problem for systems of ordinary differential equations with boundary conditions independent of the spectral parameter, we introduce the notion of the number of an eigenvalue. Methods for the computation of the numbers of eigenvalues lying in a given range of the spectral parameter and for finding the eigenvalue with a given number, which were earlier suggested by the author for Hamiltonian systems, are generalized to the considered problem. We introduce the notion of an index of a problem for a general nontrivially solvable linear homogeneous self-adjoint boundary value problem.  相似文献   

6.
We study the asymptotic behavior of the principal eigenvalue of a weakly coupled, cooperative linear elliptic system in a stationary ergodic heterogeneous medium. The system arises as the so-called multigroup diffusion model for neutron flux in nuclear reactor cores, the principal eigenvalue determining the criticality of the reactor in a stationary state. Such systems have been well studied in recent years in the periodic setting, and the purpose of this work is to obtain results in random media. Our approach connects the linear eigenvalue problem to a system of quasilinear viscous Hamilton–Jacobi equations. By homogenizing the latter, we characterize the asymptotic behavior of the eigenvalue of the linear problem and exhibit some concentration behavior of the eigenfunctions.  相似文献   

7.
The theory of the principal eigenvalue is established for the eigenvalue problem associated with a linear time-periodic nonlocal dispersal cooperative system with time delay. Then we apply it to a Nicholson's blowflies population model and obtain a threshold type result on its global dynamics.  相似文献   

8.
This paper proposes new iterative methods for the efficient computation of the smallest eigenvalue of symmetric nonlinear matrix eigenvalue problems of large order with a monotone dependence on the spectral parameter. Monotone nonlinear eigenvalue problems for differential equations have important applications in mechanics and physics. The discretization of these eigenvalue problems leads to nonlinear eigenvalue problems with very large sparse ill-conditioned matrices monotonically depending on the spectral parameter. To compute the smallest eigenvalue of large-scale matrix nonlinear eigenvalue problems, we suggest preconditioned iterative methods: preconditioned simple iteration method, preconditioned steepest descent method, and preconditioned conjugate gradient method. These methods use only matrix-vector multiplications, preconditioner-vector multiplications, linear operations with vectors, and inner products of vectors. We investigate the convergence and derive grid-independent error estimates for these methods. Numerical experiments demonstrate the practical effectiveness of the proposed methods for a model problem.  相似文献   

9.
We study inexact subspace iteration for solving generalized non-Hermitian eigenvalue problems with spectral transformation, with focus on a few strategies that help accelerate preconditioned iterative solution of the linear systems of equations arising in this context. We provide new insights into a special type of preconditioner with “tuning” that has been studied for this algorithm applied to standard eigenvalue problems. Specifically, we propose an alternative way to use the tuned preconditioner to achieve similar performance for generalized problems, and we show that these performance improvements can also be obtained by solving an inexpensive least squares problem. In addition, we show that the cost of iterative solution of the linear systems can be further reduced by using deflation of converged Schur vectors, special starting vectors constructed from previously solved linear systems, and iterative linear solvers with subspace recycling. The effectiveness of these techniques is demonstrated by numerical experiments.  相似文献   

10.
We investigate the global nature of bifurcation components of positive solutions of a general class of semilinear elliptic boundary value problems with nonlinear boundary conditions and having linear terms with sign-changing coefficients. We first show that there exists a subcontinuum, i.e., a maximal closed and connected component, emanating from the line of trivial solutions at a simple principal eigenvalue of a linearized eigenvalue problem. We next consider sufficient conditions such that the subcontinuum is unbounded in some space for a semilinear elliptic problem arising from population dynamics. Our approach to establishing the existence of the subcontinuum is based on the global bifurcation theory proposed by López-Gómez. We also discuss an a priori bound of solutions and deduce from it some results on the multiplicity of positive solutions.  相似文献   

11.
When a matrix is close to a matrix with a multiple eigenvalue, the arithmetic mean of a group of eigenvalues is a good approximation to this multiple eigenvalue. A theorem of Gershgorin type for means of eigenvalues is proved and applied as a perturbation theorem for a degenerate matrix.For a multiple eigenvalue we derive bounds for computed bases of subspaces of eigenvectors and principal vectors, relating them to the spaces spanned by the last singular vectors of corresponding powers of the matrix. These bounds assure that, provided the dimensionalities are chosen appropriately, the angles of rotation of the subspaces are of the same order of magnitude as the perturbation of the matrix.A numerical example is given.  相似文献   

12.
Coloring chains     
  相似文献   

13.
This paper focuses on the study of a linear eigenvalue problem with indefinite weight and Robin type boundary conditions. We investigate the minimization of the positive principal eigenvalue under the constraint that the absolute value of the weight is bounded and the total weight is a fixed negative constant. Biologically, this minimization problem is motivated by the question of determining the optimal spatial arrangement of favorable and unfavorable regions for a species to survive. For rectangular domains with Neumann boundary condition, it is known that there exists a threshold value such that if the total weight is below this threshold value then the optimal favorable region is like a section of a disk at one of the four corners; otherwise, the optimal favorable region is a strip attached to the shorter side of the rectangle. Here, we investigate the same problem with mixed Robin-Neumann type boundary conditions and study how this boundary condition affects the optimal spatial arrangement.  相似文献   

14.
For a given subspace, the Rayleigh-Ritz method projects the large quadratic eigenvalue problem (QEP) onto it and produces a small sized dense QEP. Similar to the Rayleigh-Ritz method for the linear eigenvalue problem, the Rayleigh-Ritz method defines the Ritz values and the Ritz vectors of the QEP with respect to the projection subspace. We analyze the convergence of the method when the angle between the subspace and the desired eigenvector converges to zero. We prove that there is a Ritz value that converges to the desired eigenvalue unconditionally but the Ritz vector converges conditionally and may fail to converge. To remedy the drawback of possible non-convergence of the Ritz vector, we propose a refined Ritz vector that is mathematically different from the Ritz vector and is proved to converge unconditionally. We construct examples to illustrate our theory.  相似文献   

15.
This paper is concerned with several eigenvalue problems in the linear stability analysis of steady state morphogen gradients for several models of Drosophila wing imaginal discs including one not previously considered. These problems share several common difficulties including the following: (a) The steady state solution which appears in the coefficients of the relevant differential equations of the stability analysis is only known qualitatively and numerically. (b) Though the governing differential equations are linear, the eigenvalue parameter appears nonlinearly after reduction to a problem for one unknown. (c) The eigenvalues are determined not only as solutions of a homogeneous boundary value problem with homogeneous Dirichlet boundary conditions, but also by an alternative auxiliary condition to one of the Dirichlet conditions allowed by a boundary condition of the original problem. Regarding the stability of the steady state morphogen gradients, we prove that the eigenvalues must all be positive and hence the steady state morphogen gradients are asymptotically stable. The other principal finding is a novel result pertaining to the smallest (positive) eigenvalue that determines the slowest decay rate of transients and the time needed to reach steady state. Here we prove that the smallest eigenvalue does not come from the nonlinear Dirichlet eigenvalue problem but from the complementary auxiliary condition requiring only to find the smallest zero of a rational function. Keeping in mind that even the steady state solution needed for the stability analysis is only known numerically, not having to solve the nonlinear Dirichlet eigenvalue problem is both an attractive theoretical outcome and a significant computational simplification.  相似文献   

16.
The purpose of the paper is to extend the principal eigenvalue and principal eigenfunction theory for time independent and periodic parabolic equations to random and general nonautonomous ones. In the random case, a notion of principal Lyapunov exponent serving as an analog of principal eigenvalue is introduced. It is shown that the principal Lyapunov exponent is deterministic and of simple multiplicity. It is also shown that there is a one-dimensional invariant random subbundle corresponding to the solutions that are globally defined and of the same sign, which serves as an analog of principal eigenfunction. In addition, monotonicity of the principal Lyapunov exponent with respect to the zero-order terms both in the equation and in the boundary condition is proved. When the second- and first-order terms are deterministic, it is proved that the principal Lyapunov exponent is greater than or equal to the principal eigenvalue of the associated time-averaged equation. In the general nonautonomous case, the concepts of principal spectrum, which serves as an analog of principal eigenvalue, and principal Lyapunov exponents are introduced. As is known, the principal spectrum is a compact interval. It is proved in the paper that the principal spectrum contains all the principal Lyapunov exponents. When the second and first-order terms are time independent, a lower estimate of the infimum of the principal spectrum is given in terms of an associated time-averaged equation.  相似文献   

17.
A semidefinite programming problem is a mathematical program in which the objective function is linear in the unknowns and the constraint set is defined by a linear matrix inequality. This problem is nonlinear, nondifferentiable, but convex. It covers several standard problems (such as linear and quadratic programming) and has many applications in engineering. Typically, the optimal eigenvalue multiplicity associated with a linear matrix inequality is larger than one. Algorithms based on prior knowledge of the optimal eigenvalue multiplicity for solving the underlying problem have been shown to be efficient. In this paper, we propose a scheme to estimate the optimal eigenvalue multiplicity from points close to the solution. With some mild assumptions, it is shown that there exists an open neighborhood around the minimizer so that our scheme applied to any point in the neighborhood will always give the correct optimal eigenvalue multiplicity. We then show how to incorporate this result into a generalization of an existing local method for solving the semidefinite programming problem. Finally, a numerical example is included to illustrate the results.  相似文献   

18.
A numerical scheme for solving high-dimensional stochastic control problems on an infinite time horizon that appear relevant in the context of molecular dynamics is outlined. The scheme rests on the interpretation of the corresponding Hamilton–Jacobi–Bellman equation as a nonlinear eigenvalue problem that, using a logarithmic transformation, can be recast as a linear eigenvalue problem, for which the principal eigenvalue and its eigenfunction are sought. The latter can be computed efficiently by approximating the underlying stochastic process with a coarse-grained Markov state model for the dominant metastable sets. We illustrate our method with two numerical examples, one of which involves the task of maximizing the population of α-helices in an ensemble of small biomolecules (alanine dipeptide), and discuss the relation to the large deviation principle of Donsker and Varadhan.  相似文献   

19.
The wrinkling instabilities of a stretched rectangular thin film subjected to in-plane bending are investigated within the framework of the linearised Donnell-von Kármán bifurcation equation for thin plates. One of our principal objectives is to assess the role played by the finite bending stiffness of the film on the linear wrinkling mechanism. To this end, we employ a non-homogeneous linear pre-bifurcation solution and cast the corresponding eigenvalue problem as a singularly-perturbed differential equation with variable coefficients. Numerical simulations of this problem reveal the existence of two different regimes for the behaviour of the lowest eigenvalue. Based on this observation, a WKB analysis is carried out in order to capture the dependence of the critical wrinkling load on the wavelength of the localised oscillatory buckling pattern and the stiffness of the elastic film. The validity of the analytical results is corroborated by independent numerical computations of the eigenvalues using the method of compound matrices.  相似文献   

20.
The wrinkling instabilities of a stretched rectangular thin film subjected to in-plane bending are investigated within the framework of the linearised Donnell-von Kármán bifurcation equation for thin plates. One of our principal objectives is to assess the role played by the finite bending stiffness of the film on the linear wrinkling mechanism. To this end, we employ a non-homogeneous linear pre-bifurcation solution and cast the corresponding eigenvalue problem as a singularly-perturbed differential equation with variable coefficients. Numerical simulations of this problem reveal the existence of two different regimes for the behaviour of the lowest eigenvalue. Based on this observation, a WKB analysis is carried out in order to capture the dependence of the critical wrinkling load on the wavelength of the localised oscillatory buckling pattern and the stiffness of the elastic film. The validity of the analytical results is corroborated by independent numerical computations of the eigenvalues using the method of compound matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号