首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 522 毫秒
1.
This paper analyses the performance of a counterflow concentric tube heat exchanger and estimates the uncertainties in the temperature response of the heat exchanging fluids caused by uncertainties in their inlet temperatures and overall heat transfer coefficients between the fluid streams. The analysis is based upon the two-point distribution technique. This paper describes the application of this technique to a heat exchanger for which the exact solution for the steady state temperature response is available. Results show that the uncertainty in inlet temperature has a stronger influence. The effect of data uncertainty in heat transfer coefficients, which generally have very high level of uncertainty, have only weak influence. The accuracy of predicted temperature response can, thus, be significantly improved by accurate measurement of the inlet fluid temperatures.  相似文献   

2.
A common of finite-time heat transfer processes between high- and low-temperature sides with generalized radiative heat transfer law [q ∝ Δ(Tn)] is studied in this paper. In general, the minimization of entropy generation in heat transfer processes is taken as the optimization objective. A new physical quantity, entransy, has been identified as a basis for optimizing heat transfer processes in terms of the analogy between heat and electrical conduction recently. Heat transfer analyses show that the entransy of an object describes its heat transfer ability, as the electrical energy in a capacitor describes its charge transfer ability. Entransy dissipation occurs during heat transfer processes, as a measure of the heat transfer irreversibility with the dissipation related thermal resistance. Under the condition of fixed heat load, the optimal configurations of hot and cold fluid temperatures for minimizing entransy dissipation are derived by using optimal control theory. The condition corresponding to the minimum entransy dissipation strategy with Newtonian heat transfer law (n = 1) is that corresponding to a constant heat flux rate, while the condition corresponding to the minimum entransy dissipation strategy with the linear phenomenological heat transfer law (n = −1) is that corresponding to a constant ratio of hot to cold fluid temperatures. Numerical examples for special cases with Newtonian, linear phenomenological and radiative heat transfer law (n = 4) are provided, and the obtained results are also compared with the conventional strategies of constant heat flux rate and constant hot fluid (reservoir) temperature operations and optimal strategies for minimizing entropy generation. Moreover, the effects of heat load changes on the optimal hot and fluid temperature configurations are also analyzed.  相似文献   

3.
Numerical models of heat transfer and fluid flow used in the simulation of the friction-stir welding (FSW) process have contributed to the understanding of the process. However, there are some input model parameters that cannot be easily determined from fundamental principles or the welding conditions. As a result, the model predictions are not always in agreement with experimental results. In this work, the Levenberg-Marquardt (LM) method is used in order to perform a non-linear estimation of the unknown parameters present in the heat transfer and fluid flow models, by adjusting the temperatures results obtained with the models to temperature experimental measurements. These models are implemented in a general-purpose software that uses a numerical formulation developed from the finite element method (FEM). The unknown parameters are: the friction coefficient and the amount of adhesion of material to the surface of the tool, the heat transfer coefficient on the bottom surface and the amount of viscous dissipation converted into heat. The obtained results show an improvement in the numerical model predictions from the incorporation of parameter estimation techniques.  相似文献   

4.
The performance of an iron-bath reactor has been studied using a comprehensive numerical model that combines a computational fluid dynamics approach for the gas phase and a heat and mass balance model for the bath. The model calculates:
  • •coal, ore, flux and oxygen consumption;
  • •post-combustion ratio (PCR);
  • •heat-transfer efficiency (HTE);
  • •off-gas temperature and composition;
  • •heat transfer and chemical reactions between gas and iron and slag droplets; and
  • •heat transfer between gas and bath, refractories and lance.
The model was validated with data reported by the Nippon Steel Corporation for a 100 t pilot plant, and the calculated and measured data are in good agreement. Modelling results showed that the dominant mechanisms of heat transfer from the gas to the bath are radiation to the slag surface and convection heat transfer to droplets.  相似文献   

5.
The study of heat transfer in channel flow has been done by previous authors for Newtonian and elastico-viscous fluids. It is the aim of the present paper to study the temperature profile for flow of a micropolar fluid in a channel induced by a constant axial pressure gradient, when the walls are maintained at constant temperatures. We have examined the effects of microrotation on the temperature profile and on the kinetic energy of the fluid. Three cases have been chosen by us for detailed study: (i) both the walls are maintained at different constant temperatures, (ii) both the walls are maintained at the same constant temperature, (iii) one wall is kept at a constant temperature and there is no heat flux at the other wall.  相似文献   

6.
This work presents a numerical study of a latent heat storage unit (LHSU) consisting of a shell-and-tube. The shell space is filled with two phase change materials (PCMs), P116 and n-octadecane, with different melting temperatures (50 °C and 27.7 °C, respectively). A heat transfer fluid (HTF: water) flows by forced convection through the inner tube, and transfers the heat to PCMs. In order to compare the thermal performances of the latent heat storage unit using two phase change materials (LHSU2) and a single PCM (LHSU1), a mathematical model based on the conservation energy equations was developed and validated with experimental data. Several numerical investigations were conducted in order to examine the impact of the key parameters: the HTF inlet temperature (ranges from 50 to 60 °C), the mass flow rate of the HTF and the proportion mass of PCMs, on the thermal performances of the latent heat storage units using two PCMs and a single PCM, during charging process (melting). This parametric study provides guidelines for system thermal performance and design optimization.  相似文献   

7.
A mathematical model of fluid flow across a rod bundle with volumetric heat generation has been built. The rods are heated with volumetric internal heat generation. To construct the model, a volume average technique (VAT) has been applied to momentum and energy transport equations for a fluid and a solid phase to develop a specific form of porous media flow equations. The model equations have been solved with a semi-analytical Galerkin method. The detailed velocity and temperature fields in the fluid flow and the solid structure have been obtained. Using the solution fields, a whole-section drag coefficient Cd and a whole-section Nusselt number Nu have also been calculated. To validate the developed solution procedure, the results have been compared to the results of a finite volume method. The comparison shows an excellent agreement. The present results demonstrate that the selected Galerkin approach is capable of performing calculations of heat transfer in a cross-flow where thermal conductivity and internal heat generation in a solid structure has to be taken into account. Although the Galerkin method has limited applicability in complex geometries, its highly accurate solutions are an important benchmark on which other numerical results can be tested.  相似文献   

8.
9.
This paper considers the classical problem of hydrodynamic and thermal boundary layers over a flat plate in a uniform stream of fluid. It is well known that similarity solutions of the energy equation are possible for the boundary conditions of constant surface temperature and constant heat flux. However, no such solution has been attempted for the convective surface boundary condition. The paper demonstrates that a similarity solution is possible if the convective heat transfer associated with the hot fluid on the lower surface of the plate is proportional to x?1/2. Numerical solutions of the resulting similarity energy equation are provided for representative Prandtl numbers of 0.1, 0.72, and 10 and a range of values of the parameter characterizing the hot fluid convection process. For the case of constant heat transfer coefficient, the same data provide local similarity solutions.  相似文献   

10.
Extended surfaces (fins) are frequently used in heat exchange devices to increase the heat transfer between a primary surface and the surrounding fluid. In the present study, we determined the thermal performance of an efficient type of perforated fin and we compared the results with those obtained for a simple solid fin and a flat surface without fins in the same working conditions. The modeled geometry comprised fins that had small channels with a circular cross section and different configurations, which were arranged stream-wise along the fin's length. The turbulent flow field around the perforated fins was modeled using the Reynolds averaged Navier–Stokes (RANS) equations and large-eddy simulation (LES) method with a suitable subgrid-scale model. The conjugate differential equations for both the solid and gas phases were solved simultaneously using the finite volume procedure with the SIMPLE algorithm. For LES, the flow and heat transfer characteristics were determined for a Reynolds number equal to 3.2×104 based on the fin length and a Prandtl number of 0.71. The results indicated that among the different configurations, the fins with three openings had the best thermo-hydraulic performance. In addition, we found that although the heat transfer rates predicted by RANS and LES were in close agreement, there were noticeable differences in the important flow characteristics, such as the recirculation zone around the fins and the total drag force on them.  相似文献   

11.
Stephan Goeke  Olaf Wünsch 《PAMM》2017,17(1):771-772
This paper presents a topology optimization method for coupled thermal problems. Heat transfer linked with the forced convection flow inside cooling channels is investigated using a conjugate model. This model includes both the full Navier-Stokes equations for the fluid medium and the energy equations for both fluid and solid. In this present work, the adjoint method is extended to such conjugate heat transfer (CHT) systems to optimize their performance by the use of gradient based methods. This performance is usually a compromise between an increase in heat flux or temperature distribution at a surface and maintaining a low pressure loss within the system. To exemplify the method a uniform temperature distribution is chosen and evaluated numerically. For implementation the open source CFD Software OpenFOAM is used. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We study a coupled nonlinear boundary value problem which has been shown to have applications to fluid flow and heat transfer in a fluid film over a stretching surface for set values of the model parameters (one of which determines the size of the problem domain). For arbitrary values of these parameters we are able to establish the existence and uniqueness of a class of monotone solutions. Perturbation solutions are then constructed and used to approximate certain invariants for the solutions. We then study a related boundary value problem formed by imposing an additional boundary condition on one of the governing equations (which results in an ill-posed problem), and we arrive at conditions allowing for solutions to this four-parameter problem to agree with the solutions to the three-parameter problem.  相似文献   

13.
Single energy pile is studied numerically by both commercial code (CFX 13.0) and open-source software (OpenFOAM). Both fluid and solid domains are simulated. The temperature distribution in the soil and fluid shows the consistency of the two software. Because of the high computational cost for the simulation of multiple piles, a simplification approach is proposed. The fluid temperatures are updated by iterative analytical calculation while the soil temperatures are simulated by conductive heat transfer equation using OpenFOAM. By this effort, the computation of the whole energy pile system is feasible. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The paper describes the derivation of finite-element models of one-dimensional fluid flows with heat transfer in pipes, using the Galerkin/least-squares approach. The models are first derived for one-phase flows, and then extended to homogeneous two-phase flows. The resulting equations have then been embedded in the context of object-oriented system modelling; this allows one to combine the fluid flow model with a model for other phenomena such as heat transfer, as well as with models of other discrete components such as pumps or valves, to obtain complex models of heat exchangers. The models are then validated by simulating a typical heat exchanger plant.  相似文献   

15.
The fully developed natural convection flow of a viscous fluid in a porous channel is modeled and studied numerically. The walls are kept at constant temperatures. The effects of various dimensionless parameters emerging in the model are studied graphically. It has been noted that the velocity and temperature both depend on the heat source and the free convection parameters.  相似文献   

16.
Of concern in this paper is an investigation of biomagnetic flow of a non-Newtonian viscoelastic fluid over a stretching sheet under the influence of an applied magnetic field generated owing to the presence of a magnetic dipole. The viscoelasticity of the fluid is characterised by Walter’s B fluid model. The applied magnetic field has been considered to be sufficiently strong to saturate the ferrofluid. The magnetization of the fluid is considered to vary linearly with temperature as well as the magnetic field intensity. The theoretical treatment of the physical problem consists of reducing it to solving a system of non-linear coupled differential equations that involve six parameters, which are solved by developing a finite difference technique. The velocity profile, the skin-friction, the wall pressure and the rate of heat transfer at the sheet are computed for a specific situation. The study shows that the fluid velocity increases as the rate of heat transfer decreases, while the local skin-friction and the wall pressure increase as the magnetic field strength is increased. It is also revealed that fluid viscoelasticity has an enhancing effect on the local skin-friction. The study will have an important bearing on magnetic drug targeting and separation of red cells as well as on the control of blood flow during surgery.  相似文献   

17.
The flow and heat transfer problem with viscous dissipation for electrically conducting non-Newtonian fluids with power-law model in the thermal entrance region of two parallel plates with magnetic field under constant heat flux and constant wall temperature conditions has been studied. The governing equations have been solved numerically using quasilinearization technique and implicit finite-difference scheme. It has been found that the effect of viscous dissipation on heat transfer is quite significant for heating and cooling conditions at the wall.  相似文献   

18.
In this paper, a powerful analytical method, called homotopy analysis method (HAM) is used to obtain the analytical solution for a nonlinear ordinary deferential equation that often appear in boundary layers problems arising in heat and mass transfer which these kinds of the equations contain infinity boundary condition. The boundary layer approximations of fluid flow and heat transfer of vertical full cone embedded in porous media give us the similarity solution for full cone subjected to surface heat flux boundary conditions. Nonlinear ODE which is obtained by similarity solution has been solved through homotopy analysis method (HAM). The main objective is to propose alternative methods of solution, which do not require small parameters and avoid linearization and physically unrealistic assumptions. The obtained analytical solution in comparison with the numerical ones represents a remarkable accuracy. The results also indicate that HAM can provide us with a convenient way to control and adjust the convergence region.  相似文献   

19.
Steady, laminar boundary fluid flow which results from the non-linear stretching of a flat surface in a nanofluid has been investigated numerically. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The resulting non-linear governing equations with associated boundary conditions are solved using variational finite element method (FEM) with a local non-similar transformation. The influence of Brownian motion number (Nb), thermophoresis number (Nt), stretching parameter (n) and Lewis number (Le) on the temperature and nanoparticle concentration profiles are shown graphically. The impact of physical parameters on rate of heat transfer (−θ′(0)) and mass transfer (−?′(0)) is shown in tabulated form. Some of results have also been compared with explicit finite difference method (FDM). Excellent validation of the present numerical results has been achieved with the earlier nonlinearly stretching sheet problem of Cortell [16] for local Nusselt number without taking the effect of Brownian motion and thermophoresis.  相似文献   

20.
Hydromagnetic heat transfer by mixed convection along an inclined continuously stretching surface, with power-law variation in the surface temperature or heat flux, in the presence of Hall current and internal heat generation/absorption has been studied. The surface is considered to be permeable to allow fluid suction or blowing, and stretching with a surface velocity varied according to a power-law. Two cases of the temperature boundary conditions were considered at the surface. The governing equations have been transformed into non-similar partial differential equations which have been integrated by the forth-order Runge–Kutta method. The effect of Hall parameter, magnetic parameter, dimensionless blowing/suction parameter, space and temperature dependent internal heat generation/absorption parameters and buoyancy force parameters on the temperature, primary and secondary flow velocity have been studied parametrically. All parameters involved in the problem affect the flow and thermal distributions except the temperature-dependent internal heat generation/absorption in the case of prescribed heat flux (PHF). Numerical values of the local skin-friction and the local Nusselt numbers for various parametric conditions have been tabulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号