首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
We propose a DC (Difference of two Convex functions) formulation approach for sparse optimization problems having a cardinality or rank constraint. With the largest-k norm, an exact DC representation of the cardinality constraint is provided. We then transform the cardinality-constrained problem into a penalty function form and derive exact penalty parameter values for some optimization problems, especially for quadratic minimization problems which often appear in practice. A DC Algorithm (DCA) is presented, where the dual step at each iteration can be efficiently carried out due to the accessible subgradient of the largest-k norm. Furthermore, we can solve each DCA subproblem in linear time via a soft thresholding operation if there are no additional constraints. The framework is extended to the rank-constrained problem as well as the cardinality- and the rank-minimization problems. Numerical experiments demonstrate the efficiency of the proposed DCA in comparison with existing methods which have other penalty terms.  相似文献   

2.
The cone of multipowers is dual to the cone of nonnegative polynomials. The relation of the former cone to combinatorial optimization problems is examined. Tensor extensions of polyhedra of combinatorial optimization problems are used for this purpose. The polyhedron of the MAX-2-CSP problem (optimization version of the two-variable constraint satisfaction problem) of tensor degree 4k is shown to be the intersection of the cone of 4k-multipowers and a suitable affine space. Thus, in contrast to SDP relaxations, the relaxation to a cone of multipowers becomes tight even for an extension of degree 4.  相似文献   

3.
Given a combinatorial optimization problem and a subset N of nonnegative integer numbers, we obtain a cardinality constrained version of this problem by permitting only those feasible solutions whose cardinalities are elements of N. In this paper we briefly touch on questions that address common grounds and differences of the complexity of a combinatorial optimization problem and its cardinality constrained version. Afterwards we focus on the polyhedral aspects of the cardinality constrained combinatorial optimization problems. Maurras (1977) [5] introduced a class of inequalities, called forbidden cardinality inequalities in this paper, that can be added to a given integer programming formulation for a combinatorial optimization problem to obtain one for the cardinality restricted versions of this problem. Since the forbidden cardinality inequalities in their original form are mostly not facet defining for the associated polyhedron, we discuss some possibilities to strengthen them, based on the experiments made in Kaibel and Stephan (2007) and Maurras and Stephan (2009) [2], [3].  相似文献   

4.
In online load balancing problems, jobs arrive over a list. Upon arrival of a job, the algorithm is required to assign it immediately and irrevocably to a machine. We consider such a makespan minimization problem with an additional cardinality constraint, i.e., at most k jobs may be assigned to each machine, where k is a parameter of the problem. We present both upper and lower bounds on the competitive ratio of online algorithms for this problem with identical machines.  相似文献   

5.
In this paper, we address continuous, integer and combinatorial k-sum optimization problems. We analyze different formulations of this problem that allow to solve it through the minimization of a relatively small number of minisum optimization problems. This approach provides a general tool for solving a variety of k-sum optimization problems and at the same time, improves the complexity bounds of many ad-hoc algorithms previously reported in the literature for particular versions of this problem. Moreover, the results developed for k-sum optimization have been extended to the more general case of the convex ordered median problem, improving upon existing solution approaches.  相似文献   

6.
A tight continuous relaxation is a crucial factor in solving mixed integer formulations of many NP-hard combinatorial optimization problems. The (weighted) max k-cut problem is a fundamental combinatorial optimization problem with multiple notorious mixed integer optimization formulations. In this paper, we explore four existing mixed integer optimization formulations of the max k-cut problem. Specifically, we show that the continuous relaxation of a binary quadratic optimization formulation of the problem is: (i) stronger than the continuous relaxation of two mixed integer linear optimization formulations and (ii) at least as strong as the continuous relaxation of a mixed integer semidefinite optimization formulation. We also conduct a set of experiments on multiple sets of instances of the max k-cut problem using state-of-the-art solvers that empirically confirm the theoretical results in item (i). Furthermore, these numerical results illustrate the advances in the efficiency of global non-convex quadratic optimization solvers and more general mixed integer nonlinear optimization solvers. As a result, these solvers provide a promising option to solve combinatorial optimization problems. Our codes and data are available on GitHub.  相似文献   

7.
The concept of flexibility—originated in the context of heat exchanger networks—is associated with a substructure which guarantees the performance of the original structure, in a given range of possible states. We extend this concept to combinatorial optimization problems, and prove several computational complexity results in this new framework.Under some monotonicity conditions, we prove that a combinatorial optimization problem polynomially transforms to its associated flexibility problem, but that the converse need not be true.In order to obtain polynomial flexibility problems, we have to restrict ourselves to combinatorial optimization problems on matroids. We also prove that, when relaxing in different ways the matroid structure, the flexibility problems become NP-complete. This fact is shown by proving the NP-completeness of the flexibility problems associated with the Shortest Path, Minimum Cut and Weighted Matching problems.  相似文献   

8.
S. Mishra  S.B. Rao 《Discrete Mathematics》2006,306(14):1586-1594
In this paper we consider a graph optimization problem called minimum monopoly problem, in which it is required to find a minimum cardinality set SV, such that, for each uV, |N[u]∩S|?|N[u]|/2 in a given graph G=(V,E). We show that this optimization problem does not have a polynomial-time approximation scheme for k-regular graphs (k?5), unless P=NP. We show this by establishing two L-reductions (an approximation preserving reduction) from minimum dominating set problem for k-regular graphs to minimum monopoly problem for 2k-regular graphs and to minimum monopoly problem for (2k-1)-regular graphs, where k?3. We also show that, for tree graphs, a minimum monopoly set can be computed in linear time.  相似文献   

9.
We describe an explicit chain map from the standard resolution to the minimal resolution for the finite cyclic group Zk of order k. We then demonstrate how such a chain map induces a “Zk-combinatorial Stokes theorem,” which in turn implies “Dold's theorem” that there is no equivariant map from an n-connected to an n-dimensional free Zk-complex. Thus we build a combinatorial access road to problems in combinatorics and discrete geometry that have previously been treated with methods from equivariant topology. The special case k=2 for this is classical; it involves Tucker's (1949) combinatorial lemma which implies the Borsuk-Ulam theorem, its proof via chain complexes by Lefschetz (1949), the combinatorial Stokes formula of Fan (1967), and Meunier's work (2006).  相似文献   

10.
The mixing set with a knapsack constraint arises in deterministic equivalent of chance-constrained programming problems with finite discrete distributions. We first consider the case that the chance-constrained program has equal probabilities for each scenario. We study the resulting mixing set with a cardinality constraint and propose facet-defining inequalities that subsume known explicit inequalities for this set. We extend these inequalities to obtain valid inequalities for the mixing set with a knapsack constraint. In addition, we propose a compact extended reformulation (with polynomial number of variables and constraints) that characterizes a linear programming equivalent of a single chance constraint with equal scenario probabilities. We introduce a blending procedure to find valid inequalities for intersection of multiple mixing sets. We propose a polynomial-size extended formulation for the intersection of multiple mixing sets with a knapsack constraint that is stronger than the original mixing formulation. We also give a compact extended linear program for the intersection of multiple mixing sets and a cardinality constraint for a special case. We illustrate the effectiveness of the proposed inequalities in our computational experiments with probabilistic lot-sizing problems.  相似文献   

11.
In this paper we develop approximation algorithms for generalizations of the following three known combinatorial optimization problems, the Prize-Collecting Steiner Tree problem, the Prize-Collecting Travelling Salesman Problem and a Location-Routing problem.Given a graph G=(V,E) on n vertices and a length function on its edges, in the grouped versions of the above mentioned problems we assume that V is partitioned into k+1 groups, {V0,V1,…,Vk}, with a penalty function on the groups. In the Group Prize-Collecting Steiner Tree problem the aim is to find S, a collection of groups of V and a tree spanning the rest of the groups not in S, so as to minimize the sum of the costs of the edges in the tree and the costs of the groups in S. The Group Prize-Collecting Travelling Salesman Problem, is defined analogously. In the Group Location-Routing problem the customer vertices are partitioned into groups and one has to select simultaneously a subset of depots to be opened and a collection of tours that covers the customer groups. The goal is to minimize the costs of the tours plus the fixed costs of the opened depots. We give a -approximation algorithm for each of the three problems, where I is the cardinality of the largest group.  相似文献   

12.
The NP-hard nature of cardinality constrained mean-variance portfolio optimization problems has led to a number of different algorithms with varying degrees of success in reaching optimality given limited computational resources and under the presence of strict time constraints present in practice. The proposed local relaxation algorithm explores the inherent structure of the objective function. It solves a sequence of small, local, quadratic-programs by first projecting asset returns onto a reduced metric space, followed by clustering in this space to identify sub-groups of assets that best accentuate a suitable measure of similarity amongst different assets. The algorithm can either be cold started using a suitable heuristic method such as the centroids of initial clusters or be warm started based on the last output. Results, using a basket of up to 3,000 stocks and with different cardinality constraints, indicates that the proposed algorithm can lead to significant performance gain over popular branch-and-cut methods. One key application of this algorithm is in dealing with large scale cardinality constrained portfolio optimization under tight time constraint, such as for the purpose of index tracking or index arbitrage at high frequency.  相似文献   

13.
Polynomial time approximation schemes and parameterized complexity   总被引:3,自引:0,他引:3  
In this paper, we study the relationship between the approximability and the parameterized complexity of NP optimization problems. We introduce a notion of polynomial fixed-parameter tractability and prove that, under a very general constraint, an NP optimization problem has a fully polynomial time approximation scheme if and only if the problem is polynomial fixed-parameter tractable. By enforcing a constraint of planarity on the W-hierarchy studied in parameterized complexity theory, we obtain a class of NP optimization problems, the planar W-hierarchy, and prove that all problems in this class have efficient polynomial time approximation schemes (EPTAS). The planar W-hierarchy seems to contain most of the known EPTAS problems, and is significantly different from the class introduced by Khanna and Motwani in their efforts in characterizing optimization problems with polynomial time approximation schemes.  相似文献   

14.
It is known that a large class of “hard” combinatorial optimization problems can be put in the form of a k-parity (weighted) matroid problem. In this paper we describe a heuristically guided algorithm for solving the above class of problems, which utilizes the information obtainable from the problem domain by computing, at each step, a possibly tight lower bound to the solution.  相似文献   

15.
Some constraint problems have a combinatorial structure where the constraints allow the sequence of variables to be rotated (necklaces), if not also the domain values to be permuted (unlabelled necklaces), without getting an essentially different solution. We bring together the fields of combinatorial enumeration, where efficient algorithms have been designed for (special cases of) some of these combinatorial objects, and constraint programming, where the requisite symmetry breaking has at best been done statically so far. We design the first search procedure and identify the first symmetry-breaking constraints for the general case of unlabelled necklaces. Further, we compare dynamic and static symmetry breaking on real-life scheduling problems featuring (unlabelled) necklaces.  相似文献   

16.
By generalizing matroid axiomatics we provide a framework in which independence systems may be classified. The concept is applied to independence systems arising from well known combinatorial optimization problems such as k-matroid intersection, matchoid, vertex packing in finite graphs and travelling salesman problems.  相似文献   

17.
Consider a graph obtained by taking an edge disjoint union of k complete bipartite graphs. Alon, Saks, and Seymour conjectured that such graphs have chromatic number at most k+1. This well known conjecture remained open for almost twenty years. In this paper, we construct a counterexample to this conjecture and discuss several related problems in combinatorial geometry and communication complexity.  相似文献   

18.
For cardinals λ,κ,θ we consider the class of graphs of cardinality λ which has no subgraph which is (κ,θ)-complete bipartite graph. The question is whether in such a class there is a universal one under (weak) embedding. We solve this problem completely under GCH. Under various assumptions mostly related to cardinal arithmetic we prove non-existence of universals for this problem. We also look at combinatorial properties useful for those problems concerning κ-dense families.  相似文献   

19.
In this paper we propose a general duality theory for a class of so called ‘max-separable’ optimization problems. In such problems functions h:R k R of the form h(x 1, . . . , x k ) =? max j ? h j (x j ), occur both as objective functions and as constraint functions (h j are assumed to be strictly increasing functions of one variable). As a result we obtain pairs of max-separable optimization problems, which possess both weak and strong duality property without a duality gap.  相似文献   

20.
We propose in this paper a fixed parameter polynomial algorithm for the cardinality-constrained quadratic optimization problem, which is NP-hard in general. More specifically, we prove that, given a problem of size n (the number of decision variables) and s (the cardinality), if the n?k largest eigenvalues of the coefficient matrix of the problem are identical for some 0 < k ≤ n, we can construct a solution algorithm with computational complexity of ${\mathcal{O}\left(n^{2k}\right)}$ . Note that this computational complexity is independent of the cardinality s and is achieved by decomposing the primary problem into several convex subproblems, where the total number of the subproblems is determined by the cell enumeration algorithm for hyperplane arrangement in ${\mathbb{R}^k}$ space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号