首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
An analysis is made of the feasibility of using wastes from the production of linen yarm (scutch, spinning and carding refuse) to modify low-density polyethylene. The effect of the composition and concentration of wastes on the processing properties (melt index), physicomechanical indices (tensile strength, elastic modulus in bending), and water resistance of composites based on low-density polyethylene is studied. It is found that the melt index decreases with an increase in the content of filler and that even a composite with a high filler content (40–50% by weight) maintains values of 0.2–0.3 g/10 min. The elastic modulus in bending increases with an increase in the content of waste, regardless of the nature of the latter. Tensile strength increases slightly and depends on the choice of filler. This result, combined with the reducation in the scatter of values of elastic modulus with an increase in filler concentration, is an indicator of the relatively high degree of heterogeneity of the systems that were studied. The water resistance of the composites decreases with an increase in filleer content. To reduce the heterogeneity of the systems, mixing should be intensified and modifiers such as stearic acid and polyisocyanates should be added.Translated from Mekhanika Kompozitnykh Materialov, Vol. 33, No. 3, pp. 408–416, May–June, 1997.  相似文献   

2.
The distribution of the orientation of the macromolecules over the wall cross section of a filled polyethylene tube is analyzed. A direct proportionality is established between the degree of orientation (estimated from the shrinkage) and the elastic modulus. The effect of various fillers on the melting and crystallization of low-density polyethylene is considered. For a specified filler concentration the elastic modulus of the composites depends very considerably on the relative area of contact between the polymer matrix and the surface of the filler.Institute of the Mechanics of Polymers, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 3, pp. 387–391, May–June, 1974.  相似文献   

3.
The possibilities of utilizing wastes of linen thread production (chaffs, spinning and roving losses) in recycled polyolefin composites have been investigated. The wastes were mixed with recycled polyethylenes (produced from domestic and industrial film production wastes). The physicomechanical properties (tensile strength, bending and tensile moduli, and water resistance) and the fluidity (melt flow-behavior index) for systems with a different filler content are estimated. Almost all the composite materials obtained have satisfactory fluidity (melt flow-behavior index is not lower than 0.07–0.15 dg/min). For all types of the composites, a slight increase in tensile strength and a considerable increase (3–7 times) in bending and tensile moduli were observed. The water resistance of the composites decreased with an increase in the filler content. The modification of filled systems with diisocyanates (diphenylmethane diisocyanate) improved the useful properties and water resistance of all the composites investigated.Translated from Mekhanika Kompozitnykh Materialov, Vol. 35, No. 2, pp. 199–210, March–April, 1999.  相似文献   

4.
The elastic (modulus of elasticity and equilibrium high-elastic modulus) and thermal (volume coefficients of thermal expansion below and above the glass transition temperature) properties of compositions based on ÉD-5 epoxy resin cured with polyethylenepolyamine have been investigated. Quartz powder and aluminoborosilicate glass powder were employed as fillers at concentrations from 0 to 0.413. The thermal expansion coefficients of the compositions were studied in a dilatometer, in which the specimen is free of mechanical loads. The Young's modulus at 25°C and the equilibrium high-elastic modulus at 125°C of the compositions were determined in the compression regime in an instrument based on the IZV-2 optical length gage. The thermal expansion coefficients of the polymer matrix were calculated with allowance for the elastic properties of the resin and the filler. It is shown that, as the filler concentration increases, the thermal and elastic properties of the resin in the filled system change. This can be interpreted as a change in the properties of the resin as it approaches the surface of the filler particles. Increased interaction between the filler surface and the epoxy resin tends to stiffen the polymer network.Scientific Research Institute of Precision Technology, Moscow. Translated from Mekhanika Polimerov, No. 6, pp. 1018–1022, November–December, 1969.  相似文献   

5.
Conclusion Based on the results of dynamic experimental studies, it was shown that addition of mineral fillers to polyethylenes does not result in a significant change in the relaxation properties of the polymer matrix of CM. It was found that aggregation of the particles of the granular filler causes a significant increase in the real part of the modulus and a decrease in the mechanical loss tangent of the CM. The possibility of using a modified elastic solution for predicting the effective characteristics of the dynamic viscoelasticity of composites was demonstrated.Translated from Mekhanika Kompozitnykh Materialov, No. 4. pp. 579–586, July–August, 1989.  相似文献   

6.
The structure of perchlorovinyl film is not affected by the addition of finely ground quartz. The modulus of elasticity and coefficient of thermal expansion of the film change additively with increase in filler concentration and do not depend on filler dispersity. The filler reduces the strength of the film and the elongation at break.Institute of Physical Chemistry, Academy of Sciences of the USSR, Moscow. Translated from Mekhanika Polimerov, No. 6, pp. 1023–1027, November–December, 1969.  相似文献   

7.
This article examines the feasibility of using coupling agents to alleviate the shortcomings characteristics of materials that contain natural fibers: low water resistance and a high degree of heterogeneity. A determination is made of the effect of additions of polyisocyanate and stearic acid on the fluidity of the melts and the strainstrength properties and water resistance of polyethylene composites containing mixtures of wastes from linen yarn production. It is shown that an addition of stearic acid significantly improves the dispersion of fibers in the composites, which in turn leads to a reduction in melt fluidity and an increase in elastic modulus in the high-filler-content region compared to composites that do not have additions of stearic acid. Additions of polyisocyanate appreciably increase the strength and water resistance of the given composites.Translated from Mekhanika Kompozitnykh Materialov, Vol. 33, No. 4, pp. 540–547, July–August, 1997.  相似文献   

8.
Strength-deformation characteristics of low-density polyethylene filled with microcrystalline cellulose Thermocell as a function of the TC content (up to 0.7 parts by weight) are studied. Characteristics such as elastic modulus, relative elongation at break, ultimate strength, and work of failure are determined. Water sorption and change in the size and strength-deformation characteristics of composite specimens during exposure to boiling water (560 min) are also studied. It is shown that with greater filler content it is possible to increase the strength-deformation characteristics of LDPE, such as elastic modulus and tensile strength. The growth of the ultimate strength is associated with the formation of a specific filler framework with increasing filler content. It is found that the main factors which cause a decrease in the elastic modulus and softening of the composite are failure of the filler framework as well as formation of stresses and voids during water sorption by the composite. It is demonstrated that the steady reproducibility of the composition, attainable high filling degrees, and ecological safety make Thermocell a promising filler for polyethylene.Translated from Mekhanika Kompozitnykh Materialov, Vol. 35, No. 1, pp. 79–90, January–February, 1999.  相似文献   

9.
Results of an experimental investigation into the elastic and sorption characteristics of a model composite material (CM) — epoxy resin filled with LiF crystals — during its moistening are presented. Properties of the binder in the CM with different filler contents (v f = 0, 0.05, 0.11, 0.23, 0.28, 0.33, 0.38, and 0.46) were evaluated indirectly by using known micromechanical models of CMs. It was revealed that, for the CM in a conditionally initial state, the elastic modulus of the binder in it and the filler microstrain (change in the interplanar distance in the crystals, measured by the X-ray method) as functions of filler content had the same character. The elastic modulus of the binder in the CM with a low filler content was equal to that for the binder in a block; the elastic modulus of the binder in the CM decreased with increasing filler content. The maximum (corresponding to water saturation of the CM) stresses in the binder and the filler microstresses as functions of filler content were of the same character. Moreover, the absolute values of maximum stresses in the binder and of filler microstresses coincided for high and low contents of the filler. At v f = 0.2–0. 3, the filler microstrains exceeded the stresses in the binder. The effect of moisture on the epoxy binder in the CM with a high filler content was not entirely reversible: the elastic characteristics of the binder increased, the diffusivity decreased, and the ultimate water content increased after a moistening-drying cycle.__________Translated from Mekhanika Kompozitnykh Materialov, Vol. 41, No. 4, pp. 499–511, July–August, 2005.  相似文献   

10.
An investigation of low-density polyethylenes filled with up to 30% by volume dispersed particles, has shown that for both the matrix and the composites the apparent viscous flow activation energy does not depend on the shear stresses and increases starting from a certain filler concentration at which the conformation range in the matrix is depleted. The dependence of the relative viscosity of the compositions on the volume filler content is satisfactorily described by an equation that contains the reduced filler concentration, defined as the ratio of the nominal filler concentration to the limiting concentration at which the adsorption layers on the particles extend throughout the matrix. The thickness of the polymer layer adsorbed on the particles must be determined from the specific exterior particle surface, with allowance for the volume of the polymer in the sorption space of the porous filler.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 3, pp. 478–486, May–June, 1976.  相似文献   

11.
Conclusions 1. The relative increase in stiffness upon the filling of PVC in the highly elastic state decreases with increase in temperature according to an exponential law.2. For a given degree of filling, the relative increase in stiffness upon filling as a function of the plasticizer content in PVC composites passes through a maximum at a degree of plasticization of 5–10%.All-Union Scientific-Research Institute of the Use of Polymeric Materials in Reclamation and Water Management, Elgava. Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 4, pp. 646–650, July–August, 1977.  相似文献   

12.
Conclusions 1. The number of natural vibration frequencies in any frequency interval for an empty cylindrical shell increases in direct proportion to the second power of the interval size, and for a shell with filler — in direct proportion to the third power of it.2. The widest (and also located at the smallest frequencies) dynamical instability region of a cylindrical shell with elastic filler corresponds to nonaxisymmetrical modes of wave formation.3. The limiting transition in the equations of this paper in the case of the frequency of the driving force tending to zero results in an expression for the critical static force for a shell with an incompressible filler. Numerical calculations in this case show, in particular, an increase of the critical force upon an increase in the modulus of elasticity of the filler, which has been noted in a number of the papers of other authors.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. P. Stuchki Latvian State University, Riga. Translated from Mekhanika Polimerov, No. 2, pp. 263–269, March–April, 1977.  相似文献   

13.
The effect of a filler on the strength properties of polymers in tension is investigated. The thermostructural stresses that develop in the composite during cure are taken into account. Relations are given for the strength of the filled polymer as a function of the percentage filler content. In the process of analyzing the thermostructural stresses an analytic expression is obtained for the linear expansion coefficient of the composite with allowance for the structural distribution of the components. Calculated values of the strength and thermostructural stresses are presented for composites with different filler contents. The theoretical determination of the strength of filled polymers is compared with the results of experimental investigations of composites based on epoxy resin filled with quartz dust.Leningrad Mechanical Institute. Translated from Mekhanika Polimerov, No. 1, pp. 97–101, January–February, 1973.  相似文献   

14.
Conclusion We tested (for mechanical and thermal effects) composites reinforced with hybrid cloth COS and VAI strips; five alternate schemes of material, which differred in terms of the content of VAI layers and layers reinforced with COS, were tested. The elasticity characteristics, tension diagrams, and CLTE of the composites were determined. It was established experimentally that variation in the relative content of the above-indicated layers makes it possible to regulate the thermal expansion of the composite in the longitudinal direction of the reinforcing strips Objectively over significant ranges; in this case, the elastic modulus varies negligibly, while the specific elastic modulus remains virtually unchanged,An alternate scheme for determining the elasticity characteristics and CLTE of laminar polymeric materials reinforced with hybrid cloth strips on the basis of component properties is developed. The model according to which the structural organization of the composite is subdivided into several levels is primarily a computational model. The stress-strain state of the repeating structural elements is evaluated by methods of the strength of materials. The proposed algorithm for computing the physicomechanical characteristics of laminar composites is implemented in the form of a computer program. The experimental elasticity characteristics and CLTE obtained for composites with a different content of COS and VAI layers are compared with those calculated in accordance with the method developed (the computed values correspond to the experimental with an accuracy acceptable for engineering applications).Translated from Mekhanika Kompozitnykh Materialov, No. 3, pp. 392–401, May–June, 1988.  相似文献   

15.
The properties of high-pressure polyethylene have been investigated at three filler concentrations and a temperatured of 130° C. There is a viscoelasticity limit with respect to vibrational shear gradient, above which a thixotropic reduction of the shear modulus and dynamic viscosity is observed. On the basis of the experimental data the dependence of the dynamic viscosity on shear gradient at various frequencies and filler concentrations is reduced to one invariant form.Mekhanika Polimerov, Vol. 4, No. 3, pp. 515–522, 1968  相似文献   

16.
Long-term (More than 20 years) creep under compression of two polymer concretes, polyestermalein resin/mineral filler composites, was studied. The concretes differ with diabase filler size (d=5–10 mm and d=10–20 mm). It was shown that nonlinearity of viscoelastic properties of concrete increases as the size of filler particle decreases. Aging of the polymer concretes reduces their viscoelastic compliance and shortens the time interval necessary to reach equilibrium conditions under stable loading state.Presented at the Ninth International Conference on the Mechanics of Composite Materials, Riga, October, 1995.Institute of Theoretical and Applied Mechanics of the AS CR, Prague 9, Prosecká 74, Czech Republic. Central Laboratory of Physical-Chemical Mechanics of the BAS, Sofia 1113 Acad. Bontchev Street, IV km, Bl. 1. Published in Mekhanika Kompozitnykh Materialov, Vol. 32, No. 2, pp. 190–194, March–April, 1995.  相似文献   

17.
The influence of mineral fillers on thermomechanical properties of matrix material of composites is investigated. Different methods to determine elastic properties and thermal expansion coefficients of composite materials have been considered and compared. Injection moulded polyester samples containing varying concentrations of talc filler are tested and properties such as Young 's modulus, thermal expansion coefficients, and volumetric shrinkage during cure are measured. Results obtained by theoretical models and from experiments are compared and discussed.To be presented at the Ninth International Conference on the Mechanics of Composite Materials (Riga, October 1995).Published in Mekhanika Kompozitnykh Materialov, Vol. 31, No. 4, pp. 435–445, July–August, 1995.  相似文献   

18.
An expression is proposed for predicting the reinforcement of composites by a dispersed filler in both the rubbery and glassy states with allowance for the internal thermal stresses in the polymer matrix. It is shown that by varying the plasticizer concentration in composites based on polyvinyl chloride it is possible to regulate the thermal stresses in the polymer matrix. The time-stress and time-concentration superposition principles are shown to be applicable to the dependence of the relative modulus of elasticity on filler concentration for glassy composites.  相似文献   

19.
Based on a plane model of composites, the effect of a transition layer on the elastic modulus Ec of the composites is analyzed in the case where, under the action of a load, the transition layer is formed both on the side of matrix and filler. In evaluating Ec, it is assumed that the elastic modulus in the layer grows linearly from the elastic modulus of matrix to that of filler, but pores in the filler are impermeable to matrix macromolecules. Analytic relation ships are found which allow one to determine the volume fractions of the transition layer on the side of matrix and filler if the experimental elastic modulus of the composite is known. These relationships are used to find the magnitude of the layer in epoxy composites with various fillers and to evaluate its effect on the compressive elastic modulus of the composites. __________ Translated from Mekhanika Kompozitnykh Materialov, Vol. 42, No. 5, pp. 693–700, September–October, 2006.  相似文献   

20.
The deformation properties of composites with disperse fillers in close to maximum amounts were investigated. Two types of matrices were selected: epoxy resin with high structural stability in filling, and a crystalline polymer-trioxane-dioxolane copolymer. Materials with a high and low relative surface area-diatomite and ceramic-were used as fillers. The elastic properties were simulated with the Kerner model and creep was simulated with its viscoelastic analog. The model was extended to a matrix-filler-buffer layer model. The possibility of estimating the part of the matrix entering the pores of the filler was examined. Differences in the use of the structural models in predicting elasticity and viscoelasticity were examined. The best results in describing creep were obtained for epoxy resin-ceramic filler composites which have the least interaction between matrix and filler. The possibility of estimating the change in the degree of crystallinity of the matrix and formation of buffer layers in filling with active fillers was examined.Presented at the Ninth International Conference on the Mechanics of Composite Materials (Riga, October, 1995).Translated from Mekhanika Kompozitnykh Materialov, Vol. 31, No. 6, pp. 754–768, November–December, 1995.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号