首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
This paper is a survey of the second smallest eigenvalue of the Laplacian of a graph G, best-known as the algebraic connectivity of G, denoted a(G). Emphasis is given on classifications of bounds to algebraic connectivity as a function of other graph invariants, as well as the applications of Fiedler vectors (eigenvectors related to a(G)) on trees, on hard problems in graphs and also on the combinatorial optimization problems. Besides, limit points to a(G) and characterizations of extremal graphs to a(G) are described, especially those for which the algebraic connectivity is equal to the vertex connectivity.  相似文献   

2.
Using a fixed set of colors C, Ann and Ben color the edges of a graph G so that no monochromatic cycle may appear. Ann wins if all edges of G have been colored, while Ben wins if completing a coloring is not possible. The minimum size of C for which Ann has a winning strategy is called the game arboricity of G, denoted by Ag(G). We prove that Ag(G)?3k for any graph G of arboricity k, and that there are graphs such that Ag(G)?2k-2. The upper bound is achieved by a suitable version of the activation strategy, used earlier for the vertex coloring game. We also provide two other strategies based on induction and acyclic colorings.  相似文献   

3.
For a (simple) graph G, the signless Laplacian of G is the matrix A(G)+D(G), where A(G) is the adjacency matrix and D(G) is the diagonal matrix of vertex degrees of G; the reduced signless Laplacian of G is the matrix Δ(G)+B(G), where B(G) is the reduced adjacency matrix of G and Δ(G) is the diagonal matrix whose diagonal entries are the common degrees for vertices belonging to the same neighborhood equivalence class of G. A graph is said to be (degree) maximal if it is connected and its degree sequence is not majorized by the degree sequence of any other connected graph. For a maximal graph, we obtain a formula for the characteristic polynomial of its reduced signless Laplacian and use the formula to derive a localization result for its reduced signless Laplacian eigenvalues, and to compare the signless Laplacian spectral radii of two well-known maximal graphs. We also obtain a necessary condition for a maximal graph to have maximal signless Laplacian spectral radius among all connected graphs with given numbers of vertices and edges.  相似文献   

4.
For a given graph G with (0, 1)-adjacency matrix AG, the generalized characteristic polynomial of G is defined to be ?G=?G(λ,t)=det(λI-(AG-tDG)), where I is the identity matrix and DG is the diagonal degree matrix of G. In this paper, we are mainly concerned with the problem of characterizing a given graph G by its generalized characteristic polynomial ?G. We show that graphs with the same generalized characteristic polynomials have the same degree sequence, based on which, a unified approach is proposed to show that some families of graphs are characterized by ?G. We also provide a method for constructing graphs with the same generalized characteristic polynomial, by using GM-switching.  相似文献   

5.
Let α(G) and χ(G) denote the independence number and chromatic number of a graph G, respectively. Let G×H be the direct product graph of graphs G and H. We show that if G and H are circular graphs, Kneser graphs, or powers of cycles, then α(G×H)=max{α(G)|V(H)|,α(H)|V(G)|} and χ(G×H)=min{χ(G),χ(H)}.  相似文献   

6.
By the signless Laplacian of a (simple) graph G we mean the matrix Q(G)=D(G)+A(G), where A(G),D(G) denote respectively the adjacency matrix and the diagonal matrix of vertex degrees of G. For every pair of positive integers n,k, it is proved that if 3?k?n-3, then Hn,k, the graph obtained from the star K1,n-1 by joining a vertex of degree 1 to k+1 other vertices of degree 1, is the unique connected graph that maximizes the largest signless Laplacian eigenvalue over all connected graphs with n vertices and n+k edges.  相似文献   

7.
Let G be a graph with n vertices and μ(G) be the largest eigenvalue of the adjacency matrix of G. We study how large μ(G) can be when G does not contain cycles and paths of specified order. In particular, we determine the maximum spectral radius of graphs without paths of given length, and give tight bounds on the spectral radius of graphs without given even cycles. We also raise a number of open problems.  相似文献   

8.
Let G be a simple connected graph with n vertices and m edges. Denote the degree of vertex vi by d(vi). The matrix Q(G)=D(G)+A(G) is called the signless Laplacian of G, where D(G)=diag(d(v1),d(v2),…,d(vn)) and A(G) denote the diagonal matrix of vertex degrees and the adjacency matrix of G, respectively. Let q1(G) be the largest eigenvalue of Q(G). In this paper, we first present two sharp upper bounds for q1(G) involving the maximum degree and the minimum degree of the vertices of G and give a new proving method on another sharp upper bound for q1(G). Then we present three sharp lower bounds for q1(G) involving the maximum degree and the minimum degree of the vertices of G. Moreover, we determine all extremal graphs which attain these sharp bounds.  相似文献   

9.
Jia Huang 《Discrete Mathematics》2007,307(15):1881-1897
The bondage number b(G) of a nonempty graph G is the cardinality of a smallest edge set whose removal from G results in a graph with domination number greater than the domination number γ(G) of G. Kang and Yuan proved b(G)?8 for every connected planar graph G. Fischermann, Rautenbach and Volkmann obtained some further results for connected planar graphs. In this paper, we generalize their results to connected graphs with small crossing numbers.  相似文献   

10.
An upper bound for the domination number of the direct product of graphs is proved. It in particular implies that for any graphs G and H, γ(G×H)?3γ(G)γ(H). Graphs with arbitrarily large domination numbers are constructed for which this bound is attained. Concerning the upper domination number we prove that Γ(G×H)?Γ(G)Γ(H), thus confirming a conjecture from [R. Nowakowski, D.F. Rall, Associative graph products and their independence, domination and coloring numbers, Discuss. Math. Graph Theory 16 (1996) 53-79]. Finally, for paired-domination of direct products we prove that γpr(G×H)?γpr(G)γpr(H) for arbitrary graphs G and H, and also present some infinite families of graphs that attain this bound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号