首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
The collinear relative equilibrium solutions are among the few explicitly known periodic solutions of the Newtonian three-body problem. When the energy and angular momentum constants are varied slightly, these unstable periodic orbits become normally hyperbolic invariant spheres whose stable and unstable manifolds form separatrices in the integral manifolds. The goal of this paper is to construct simple isolating blocks for these invariant spheres analogous to those introduced by Conley in the restricted three-body problem. This allows continuation of the invariant set and the separatrices to energies and angular momenta far from those of the relative equilibrium.

  相似文献   


2.
A class of problems that may be characterized as localization problems are becoming increasingly popular in qualitative theory of differential equations [1–15]. The specific formulations differ, but geometrically all search for phase space subsets with desired properties, e.g., contain certain solutions of the system of differential equations. Such problems include construction of positive invariant sets that contain certain separatrices of the Lorenz system [1], analysis of asymptotic behavior of solutions of the Lorenz system and determination of sets that contain the Lorenz attractor [2–5, 14], as well as determination of sets containing all periodic trajectories [6–13], separatrices, and other trajectories [10, 11]. Such sets may be naturally called localizing sets and it is obviously interesting to study methods and results that produce exact or nearly exact localizing sets for each phase space structure. In this article we focus on localization of the invariant compact sets in the phase space of a differential equation system, specifically the problem of finding phase space subsets that contain all the invariant compacta of the system. Invariant compact sets are equilibria, periodic trajectories, separatrices, limit cycles, invariant tori, and other sets and their finite unions. These sets and their properties largely determine the phase space structure and the qualitative behavior of solutions of the differential equation system.  相似文献   

3.
Summary We study separatrix crossing in near-integrablek-degree-of-freedom Hamiltonian flows, 2 <k < , whose unperturbed phase portraits contain separatrices inn degrees of freedom, 1 <n <k. Each of the unperturbed separatrices can be recast as a codimension-one separatrix in the 2k-dimensional phase space, and the collection of these separatrices takes on a variety of geometrical possibilities in the reduced representation of a Poincaré section on the energy surface. In general 0 l n of the separatrices will be available to the Poincaré section, and each separatrix may be completely isolated from all other separatrices or intersect transversely with one or more of the other available separatrices. For completely isolated separatrices, transitions across broken separatrices are described for each separatrix by the single-separatrix crossing theory of Wiggins, as modified by Beigie. For intersecting separatrices, a possible violation of a normal hyperbolicity condition complicates the analysis by preventing the use of a persistence and smoothness theory for compact normally hyperbolic invariant manifolds and their local stable and unstable manifolds. For certain classes of multi-degree-of-freedom flows, however, a local persistence and smoothness result is straightforward, and we study the global implications of such a local result. In particular, we find codimension-one partial barriers and turnstile boundaries associated with each partially destroyed separatrix. From the collection of partial barriers and turnstiles follows a rich phase space partitioning and transport formalism to describe the dynamics amongst the various degrees of freedom. A generalization of Wiggins' higher-dimensional Melnikov theory to codimension-one surfaces in the multi-separatrix case allows one to uncover invariant manifold geometry. In the context of this perturbative analysis and detailed numerical computations, we study invariant manifold geometry, phase space partitioning, and phase space transport, with particular attention payed to the role of a vanishing frequency in the limit approaching the intersection of the partially destroyed separatrices. The class of flows under consideration includes flows of basic physical relevance, such as those describing scattering phenomena. The analysis is illustrated in the context of a detailed study of a 3-degree-of-freedom scattering problem.  相似文献   

4.
In this paper, we study the classical problem of the exponentially small splitting of separatrices of the rapidly forced pendulum. Firstly, we give an asymptotic formula for the distance between the perturbed invariant manifolds in the so-called singular case and we compare it with the prediction of Melnikov theory. Secondly, we give exponentially small upper bounds in some cases in which the perturbation is bigger than in the singular case and we give some heuristic ideas how to obtain an asymptotic formula for these cases. Finally, we study how the splitting of separatrices behaves when the parameters are close to a codimension-2 bifurcation point.  相似文献   

5.
Generally, the invariant Lagrangian manifolds (stable and unstable separatrices) asymptotic with respect to a hyperbolic torus of a Hamiltonian system do not coincide. This phenomenon is called separatrix splitting. In this paper, a symplectic invariant qualitatively describing separatrix splitting for hyperbolic tori of maximum (smaller by one than the number of degrees of freedom) dimension is constructed. The construction resembles that of the homoclinic invariant found by lazutkin for two-dimensional symplectic maps and of Bolotin's invariant for splitting of asymptotic manifolds of a fixed point of a symplectic diffeomorphism. Translated fromMatematicheskie Zametki, Vol. 61, No. 6, pp. 890–906, June, 1997. Translated by O. V. Sipacheva  相似文献   

6.
If a real valued invariant of compact combinatorial manifolds (with or without boundary) depends only on the number of simplices in each dimension in the manifold, then the invariant is completely determined by the Euler characteristic of the manifold and its boundary. So essentially, the Euler characteristic is the unique invariant of this type.  相似文献   

7.
In this article we shall prove a new necessary and sufficient condition for automorphisms to be standard, from which we shall deduce the standardness of an automorphism of transposition of intervals with respect to any continuous Borel invariant ergodic measure, and the standardness of the flux of the class C1 on a two-dimensional compact variety with a finite number of stationary points and separatrices, with respect to any Borel invariant ergodic measure whose carrier contains an open set.Translated from Matematicheskie Zametki, Vol. 20, No. 4, pp. 479–488, October, 1976.  相似文献   

8.
We study a smooth symplectic 2-parameter unfolding of an almost hyperbolic diffeomorphism on two-dimensional torus. This diffeomorphism has a fixed point of the type of the degenerate saddle. In the parameter plane there is a bifurcation curve corresponding to the transition from the degenerate saddle into a saddle and parabolic fixed point, separatrices of these latter points form a channel on the torus. We prove that a saddle period-2 point exists for all parameter values close to the co-dimension two point whose separatrices intersect transversely the boundary curves of the channel that implies the existence of a quadratic homoclinic tangency for this period-2 point which occurs along a sequence of parameter values accumulating at the co-dimension 2 point. This leads to the break of stable/unstable foliations existing for almost hyperbolic diffeomorphism. Using the results of Franks [1] on π 1-diffeomorphisms, we discuss the possibility to get an invariant Cantor set of a positive measure being non-uniformly hyperbolic.  相似文献   

9.
We initiate the study of classical knots through the homotopy class of the nth evaluation map of the knot, which is the induced map on the compactified n-point configuration space. Sending a knot to its nth evaluation map realizes the space of knots as a subspace of what we call the nth mapping space model for knots. We compute the homotopy types of the first three mapping space models, showing that the third model gives rise to an integer-valued invariant. We realize this invariant in two ways, in terms of collinearities of three or four points on the knot, and give some explicit computations. We show this invariant coincides with the second coefficient of the Conway polynomial, thus giving a new geometric definition of the simplest finite-type invariant. Finally, using this geometric definition, we give some new applications of this invariant relating to quadrisecants in the knot and to complexity of polygonal and polynomial realizations of a knot.  相似文献   

10.
We construct an endomorphism of the Khovanov invariant to prove H-thinness and pairing phenomena of the invariants for alternating links. As a consequence, it follows that the Khovanov invariant of an oriented nonsplit alternating link is determined by its Jones polynomial, signature, and the linking numbers of its components.  相似文献   

11.
In this paper we provide a complete algebraic invariant of link-homotopy, that is, an algebraic invariant that distinguishes two links if and only if they are link-homotopic. The paper establishes a connection between the “peripheral structures” approach to link-homotopy taken by Milnor, Levine and others, and the string link action approach taken by Habegger and Lin.  相似文献   

12.
In this paper, we consider closed surfaces which contain spatial graphs. In the case that a closed surface is a 2-sphere, we show that the 2-sphere can be isotoped so that it intersects a bridge sphere for the spatial graph in a single loop. In the case that a closed surface is not a 2-sphere, we define an invariant of a spatial graph by counting the number of intersection of a compressing disk for the closed surface and the spatial graph. By using this invariant, we give a lower bound for the bridge number of a spatial graph.  相似文献   

13.
This is the first in a series of papers exploring the relationship between the Rohlin invariant and gauge theory. We discuss a Casson-type invariant of a 3-manifold Y with the integral homology of the 3-torus, given by counting projectively flat U(2)-connections. We show that its mod 2 evaluation is given by the triple cup product in cohomology, and so it coincides with a certain sum of Rohlin invariants of Y. Our counting argument makes use of a natural action of H 1 (Y;2) on the moduli space of projectively flat connections; along the way we construct perturbations that are equivariant with respect to this action. Combined with the Floer exact triangle, this gives a purely gauge-theoretic proof that Cassons homology sphere invariant reduces mod 2 to the Rohlin invariant.  相似文献   

14.
The Kontsevich integral of a knot is a graph-valued invariant which (when graded by the Vassiliev degree of graphs) is characterized by a universal property; namely it is a universal Vassiliev invariant of knots. We introduce a second grading of the Kontsevich integral, the Euler degree, and a geometric null-move on the set of knots. We explain the relation of the null-move to S-equivalence, and the relation to the Euler grading of the Kontsevich integral. The null-move leads in a natural way to the introduction of trivalent graphs with beads, and to a conjecture on a rational version of the Kontsevich integral, formulated by the second author and proven in Geom. Top 8 (2004) 115 (see also Kricker, preprint 2000, math/GT.0005284).  相似文献   

15.
Given a knot in an integer homology sphere, one can construct a family of closed 3-manifolds (parameterized by the positive integers), namely the cyclic branched coverings of the knot. In this paper, we give a formula for the Casson-Walker invariants of these 3-manifolds in terms of residues of a rational function (which measures the 2-loop part of the Kontsevich integral of a knot) and the signature function of the knot. Our main result actually computes the LMO invariant of cyclic branched covers in terms of a rational invariant of the knot and its signature function.  相似文献   

16.
We prove the quantum filtration on the Khovanov-Rozansky link cohomology Hp with a general degree (n+1) monic potential polynomial p(x) is invariant under Reidemeister moves, and construct a spectral sequence converging to Hp that is invariant under Reidemeister moves, whose E1 term is isomorphic to the Khovanov-Rozansky sl(n)-cohomology Hn. Then we define a generalization of the Rasmussen invariant, and study some of its properties. We also discuss relations between upper bounds of the self-linking number of transversal links in standard contact S3.  相似文献   

17.
Y. Miyazawa defined a polynomial invariant for a virtual link by using magnetic graph diagrams, which is related with the Jones-Kauffman polynomial. In this paper we show some relations of this polynomial for a virtual skein triple.  相似文献   

18.
In their recent preprint, Baldwin, Ozsváth and Szabó defined a twisted version (with coefficients in a Novikov ring) of a spectral sequence, previously defined by Ozsváth and Szabó, from Khovanov homology to Heegaard–Floer homology of the branched double cover along a link. In their preprint, they give a combinatorial interpretation of the E3E3-term of their spectral sequence. The main purpose of the present paper is to prove directly that this E3E3-term is a link invariant. We also give some concrete examples of computation of the invariant.  相似文献   

19.
We have a knot quandle and a fundamental class as invariants for a surface-knot. These invariants can be defined for a classical knot in a similar way, and it is known that the pair of them is a complete invariant for classical knots. In surface-knot theory the situation is different: There exist arbitrarily many inequivalent surface-knots of genus g with the same knot quandle, and there exist two inequivalent surface-knots of genus g with the same knot quandle and with the same fundamental class.  相似文献   

20.
Rudolph introduced the notion of braidzel surfaces as a generalization of pretzel surfaces, and Nakamura showed that any oriented link has a braidzel surface. In this paper, we introduce the notion of flat braidzel surfaces as a special kind of braidzel surfaces, and show that any oriented link has a flat braidzel surface. We also introduce and study a new integral invariant of links, named the flat braidzel genus, with respect to their flat braidzel surfaces. Moreover, we give a way to calculate the number of components, the distance from proper links, the Arf invariant, and a Seifert matrix of a given link through the flat braidzel notation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号