首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the most efficient methods for solving the polynomial eigenvalue problem (PEP) is the Sakurai-Sugiura method with Rayleigh-Ritz projection (SS-RR), which finds the eigenvalues contained in a certain domain using the contour integral. The SS-RR method converts the original PEP to a small projected PEP using the Rayleigh-Ritz projection. However, the SS-RR method suffers from backward instability when the norms of the coefficient matrices of the projected PEP vary widely. To improve the backward stability of the SS-RR method, we combine it with a balancing technique for solving a small projected PEP. We then analyze the backward stability of the SS-RR method. Several numerical examples demonstrate that the SS-RR method with the balancing technique reduces the backward error of eigenpairs of PEP.  相似文献   

2.
Summary. We present bounds on the backward errors for the symmetric eigenvalue decomposition and the singular value decomposition in the two-norm and in the Frobenius norm. Through different orthogonal decompositions of the computed eigenvectors we can define different symmetric backward errors for the eigenvalue decomposition. When the computed eigenvectors have a small residual and are close to orthonormal then all backward errors tend to be small. Consequently it does not matter how exactly a backward error is defined and how exactly residual and deviation from orthogonality are measured. Analogous results hold for the singular vectors. We indicate the effect of our error bounds on implementations for eigenvector and singular vector computation. In a more general context we prove that the distance of an appropriately scaled matrix to its orthogonal QR factor is not much larger than its distance to the closest orthogonal matrix. Received July 19, 1993  相似文献   

3.
Problem-dependent upper and lower bounds are given for the stepsize taken by long Taylor series methods for solving initial value problems in ordinary differential equations. Taylor series methods recursively generate the terms of the Taylor series and estimate the radius of convergence as well as the order and location of the primary singularities. A stepsize must then be chosen which is as large as possible to minimize the required number of steps, while remaining small enough to maintain the truncation error less than some tolerance.One could use any of four different measures of trunction error in an attempt to control the global error : i) absolute truncation error per step, ii) absolute trunction error per unit step, iii) relative truncation error per step, and iv) relative truncation error per unit step. For each of these measures, we give bounds for error and for the stepsize which yields a prescribed error. The bounds depend on the series length, radius of convergence, order, and location of the primary singularities. The bounds are shown to be optimal for functions with only one singularity of any order on the circle of convergence.  相似文献   

4.
The null space method is a standard method for solving the linear least squares problem subject to equality constraints (the LSE problem). We show that three variants of the method, including one used in LAPACK that is based on the generalized QR factorization, are numerically stable. We derive two perturbation bounds for the LSE problem: one of standard form that is not attainable, and a bound that yields the condition number of the LSE problem to within a small constant factor. By combining the backward error analysis and perturbation bounds we derive an approximate forward error bound suitable for practical computation. Numerical experiments are given to illustrate the sharpness of this bound.  相似文献   

5.
For a given subspace, the Rayleigh-Ritz method projects the large quadratic eigenvalue problem (QEP) onto it and produces a small sized dense QEP. Similar to the Rayleigh-Ritz method for the linear eigenvalue problem, the Rayleigh-Ritz method defines the Ritz values and the Ritz vectors of the QEP with respect to the projection subspace. We analyze the convergence of the method when the angle between the subspace and the desired eigenvector converges to zero. We prove that there is a Ritz value that converges to the desired eigenvalue unconditionally but the Ritz vector converges conditionally and may fail to converge. To remedy the drawback of possible non-convergence of the Ritz vector, we propose a refined Ritz vector that is mathematically different from the Ritz vector and is proved to converge unconditionally. We construct examples to illustrate our theory.  相似文献   

6.
In the present paper, we propose Krylov‐based methods for solving large‐scale differential Sylvester matrix equations having a low‐rank constant term. We present two new approaches for solving such differential matrix equations. The first approach is based on the integral expression of the exact solution and a Krylov method for the computation of the exponential of a matrix times a block of vectors. In the second approach, we first project the initial problem onto a block (or extended block) Krylov subspace and get a low‐dimensional differential Sylvester matrix equation. The latter problem is then solved by some integration numerical methods such as the backward differentiation formula or Rosenbrock method, and the obtained solution is used to build the low‐rank approximate solution of the original problem. We give some new theoretical results such as a simple expression of the residual norm and upper bounds for the norm of the error. Some numerical experiments are given in order to compare the two approaches.  相似文献   

7.
We investigate contour integral-based eigensolvers for computing all eigenvalues located in a certain region and their corresponding eigenvectors. In this paper, we focus on a Rayleigh–Ritz type method and analyze its error bounds. From the results of our analysis, we conclude that the Rayleigh–Ritz type contour integral-based eigensolver with sufficient subspace size can achieve high accuracy for target eigenpairs even if some eigenvalues exist outside but near the region.  相似文献   

8.
This work concerns with the discontinuous Galerkin (DG) method for the time‐dependent linear elasticity problem. We derive the a posteriori error bounds for semidiscrete and fully discrete problems, by making use of the stationary elasticity reconstruction technique which allows to estimate the error for time‐dependent problem through the error estimation of the associated stationary elasticity problem. For fully discrete scheme, we make use of the backward‐Euler scheme and an appropriate space‐time reconstruction. The technique here can be applicable for a variety of DG methods as well.  相似文献   

9.
Jens-Peter M. Zemke 《PAMM》2008,8(1):10835-10836
We consider the extraction of approximate eigenpairs from a given Krylov subspace that are optimal, or at least quasi–optimal with respect to the normwise backward error. An algorithm based on Newton–Grassmannian optimization and a simple example are given; a useful graphical method of comparison with other extraction methods is briefly sketched. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Summary. In this paper we propose a matrix analysis of the Arnoldi and Lanczos procedures when used for approximating the eigenpairs of a non-normal matrix. By means of a new relation between the respective representation matrices, we relate the corresponding eigenvalues and eigenvectors. Moreover, backward error analysis is used to theoretically justify some unexpected experimental behaviors of non-normal matrices and in particular of banded Toeplitz matrices. Received June 19, 1996 / Revised version received November 3, 1997  相似文献   

11.
We derive error bounds for the Rayleigh-Ritz method for the approximation to extremal eigenpairs of a symmetric matrix. The bounds are expressed in terms of the eigenvalues of the matrix and the angle between the subspace and the eigenvector. We also present a sharp bound.

  相似文献   


12.
In this article, we investigate the backward error and perturbation bounds for the high order Sylvester tensor equation (STE). The bounds of the backward error and three types of upper bounds for the perturbed STE with or without dropping the second order terms are presented. The classic perturbation results for the Sylvester equation are extended to the high order case.  相似文献   

13.
The aim of this paper is to study parabolic integro-differential equations of Kirchhoff type. We prove the existence and uniqueness of the solution for this problem via Galerkin method. Semidiscrete formulation for this problem is presented using conforming finite element method. As a consequence of the Ritz–Volterra projection, we derive error estimates for both semidiscrete solution and its time derivative. To find the numerical solution of this class of equations, we develop two different types of numerical schemes, which are based on backward Euler–Galerkin method and Crank–Nicolson–Galerkin method. A priori bounds and convergence estimates in spatial as well as temporal direction of the proposed schemes are established. Finally, we conclude this work by implementing some numerical experiments to confirm our theoretical results.  相似文献   

14.
Backward Error Bounds for Constrained Least Squares Problems   总被引:1,自引:0,他引:1  
We derive an upper bound on the normwise backward error of an approximate solution to the equality constrained least squares problem min Bx=d bAx2. Instead of minimizing over the four perturbations to A, b, B and d, we fix those to B and d and minimize over the remaining two; we obtain an explicit solution of this simplified minimization problem. Our experiments show that backward error bounds of practical use are obtained when B and d are chosen as the optimal normwise relative backward perturbations to the constraint system, and we find that when the bounds are weak they can be improved by direct search optimization. We also derive upper and lower backward error bounds for the problem of least squares minimization over a sphere: .  相似文献   

15.
The development of new classes of linearizations of square matrix polynomials that generalize the classical first and second Frobenius companion forms has attracted much attention in the last decade. Research in this area has two main goals: finding linearizations that retain whatever structure the original polynomial might possess, and improving properties that are essential for accurate numerical computation, such as eigenvalue condition numbers and backward errors. However, all recent progress on linearizations has been restricted to square matrix polynomials. Since rectangular polynomials arise in many applications, it is natural to investigate if the new classes of linearizations can be extended to rectangular polynomials. In this paper, the family of Fiedler linearizations is extended from square to rectangular matrix polynomials, and it is shown that minimal indices and bases of polynomials can be recovered from those of any linearization in this class via the same simple procedures developed previously for square polynomials. Fiedler linearizations are one of the most important classes of linearizations introduced in recent years, but their generalization to rectangular polynomials is nontrivial, and requires a completely different approach to the one used in the square case. To the best of our knowledge, this is the first class of new linearizations that has been generalized to rectangular polynomials.  相似文献   

16.
Error bounds (estimates for the distance to the solution set of a given problem) are key to analyzing convergence rates of computational methods for solving the problem in question, or sometimes even to justifying convergence itself. That said, for the generalized Nash equilibrium problems (GNEP), the theory of error bounds had not been developed in depth comparable to the fields of optimization and variational problems. In this paper, we provide a systematic approach which should be useful for verifying error bounds for both specific instances of GNEPs and for classes of GNEPs. These error bounds for GNEPs are based on more general results for constraints that involve complementarity relations and cover those (few) GNEP error bounds that existed previously, and go beyond. In addition, they readily imply a Lipschitzian stability result for solutions of GNEPs, a subject where again very little had been known. As a specific application of error bounds, we discuss Newtonian methods for solving GNEPs. While we do not propose any significantly new methods in this respect, some new insights into applicability to GNEPs of various approaches and into their convergence properties are presented.  相似文献   

17.
In this paper, we compare two block triangular preconditioners for different linearizations of the Rayleigh–Bénard convection problem discretized with finite element methods. The two preconditioners differ in the nested or nonnested use of a certain approximation of the Schur complement associated to the Navier–Stokes block. First, bounds on the generalized eigenvalues are obtained for the preconditioned systems linearized with both Picard and Newton methods. Then, the performance of the proposed preconditioners is studied in terms of computational time. This investigation reveals some inconsistencies in the literature that are hereby discussed. We observe that the nonnested preconditioner works best both for the Picard and for the Newton cases. Therefore, we further investigate its performance by extending its application to a mixed Picard–Newton scheme. Numerical results of two‐ and three‐dimensional cases show that the convergence is robust with respect to the mesh size. We also give a characterization of the performance of the various preconditioned linearization schemes in terms of the Rayleigh number.  相似文献   

18.
Mixed finite element methods are applied to a fourth order reaction diffusion equation with different types of boundary conditions. Some a priori bounds are established with the help of Lyapunov functional. The semidiscrete schemes are derived using C0‐piecewise linear finite elements in spatial direction and error estimates are obtained. The semidiscrete problem is then discretized in the temporal direction using backward Euler method and the wellposedness of the completely discrete scheme is discussed. Finally, a priori error estimates are established. While deriving a priori error estimates, Gronwall's lemma is applied and the constants involved in the error bounds do not depend exponentially on $\frac{1}{\gamma}$, where γ is a parameter appeared in the fourth order derivative. © 2011Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2012  相似文献   

19.
Componentwise error analysis for a modification of the cyclic reduction without back substitution for a tridiagonal system is presented. We consider relative roundoff errors and equivalent perturbations, so the main supposition is that all the data is nonzero. First, backward analysis for the computation of each component of the solution in separate is presented. Bounds on the relative equivalent perturbations are obtained depending on two constants. From these bounds it is easy to obtain a componentwise forward error analysis. Then the two constants are defined for some special classes of matrices, i.e. diagonally dominant (row or column), symmetric positive definite, totally nonnegative andM-matrices, and it is shown that the bounds for these classes of matrices are small.The author was supported by Grants MM-211/92 and MM-434/94 from the National Scientific Research Fund of the Bulgarian Ministry of Education and Science.  相似文献   

20.
In this paper, we consider backward errors in the eigenproblem of symmetric centrosymmetric and symmetric skew-centrosymmetric matrices. By making use of the properties of symmetric centrosymmetric and symmetric skew-centrosymmetric matrices, we derive explicit formulae for the backward errors of approximate eigenpairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号