首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the convergence of Newton iterations to non-stationary points   总被引:1,自引:0,他引:1  
We study conditions under which line search Newton methods for nonlinear systems of equations and optimization fail due to the presence of singular non-stationary points. These points are not solutions of the problem and are characterized by the fact that Jacobian or Hessian matrices are singular. It is shown that, for systems of nonlinear equations, the interaction between the Newton direction and the merit function can prevent the iterates from escaping such non-stationary points. The unconstrained minimization problem is also studied, and conditions under which false convergence cannot occur are presented. Several examples illustrating failure of Newton iterations for constrained optimization are also presented. The paper also shows that a class of line search feasible interior methods cannot exhibit convergence to non-stationary points. This author was supported by Air Force Office of Scientific Research grant F49620-00-1-0162, Army Research Office Grant DAAG55-98-1-0176, and National Science Foundation grant INT-9726199.This author was supported by Department of Energy grant DE-FG02-87ER25047-A004.This author was supported by National Science Foundation grant CCR-9987818 and Department of Energy grant DE-FG02-87ER25047-A004.  相似文献   

2.
We describe an interior-point algorithm for monotone linear complementarity problems in which primal-dual affine scaling is used to generate the search directions. The algorithm is shown to have global and superlinear convergence with Q-order up to (but not including) two. The technique is shown to be consistent with a potential-reduction algorithm, yielding the first potential-reduction algorithm that is both globally and superlinearly convergent.Corresponding author. The work of this author was based on research supported by the Office of Scientific Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38.The work of this author was based on research supported by the National Science Foundation under grant DDM-9109404 and the Office of Naval Research under grant N00014-93-1-0234. This work was done while the author was a faculty member of the Systems and Industrial Engineering Department at the University of Arizona.  相似文献   

3.
This paper describes an active-set algorithm for large-scale nonlinear programming based on the successive linear programming method proposed by Fletcher and Sainz de la Maza [10]. The step computation is performed in two stages. In the first stage a linear program is solved to estimate the active set at the solution. The linear program is obtained by making a linear approximation to the 1 penalty function inside a trust region. In the second stage, an equality constrained quadratic program (EQP) is solved involving only those constraints that are active at the solution of the linear program. The EQP incorporates a trust-region constraint and is solved (inexactly) by means of a projected conjugate gradient method. Numerical experiments are presented illustrating the performance of the algorithm on the CUTEr [1, 15] test set.This author was supported by Air Force Office of Scientific Research grant F49620-00-1-0162, Army Research Office Grant DAAG55-98-1-0176, and National Science Foundation grant INT-9726199.This author was supported in part by the EPSRC grant GR/R46641.These authors were supported by National Science Foundation grants CCR-9987818, ATM-0086579 and CCR-0219438 and Department of Energy grant DE-FG02-87ER25047-A004.Report OTC 2002/4, Optimization Technology CenterTo Roger Fletcher, with respect and admiration  相似文献   

4.
Quadratic programming with one negative eigenvalue is NP-hard   总被引:2,自引:0,他引:2  
We show that the problem of minimizing a concave quadratic function with one concave direction is NP-hard. This result can be interpreted as an attempt to understand exactly what makes nonconvex quadratic programming problems hard. Sahni in 1974 [8] showed that quadratic programming with a negative definite quadratic term (n negative eigenvalues) is NP-hard, whereas Kozlov, Tarasov and Haijan [2] showed in 1979 that the ellipsoid algorithm solves the convex quadratic problem (no negative eigenvalues) in polynomial time. This report shows that even one negative eigenvalue makes the problem NP-hard.This author's work supported by the Applied Mathematical Sciences Program (KC-04-02) of the Office of Energy Research of the U.S. Department of Energy under grant DE-FG02-86ER25013. A000 and in part by the National Science Foundation, the Air Force Office of Scientific Research, and the Office of Naval Research, through NSF grant DMS 8920550.  相似文献   

5.
We consider-approximation schemes for indefinite quadratic programming. We argue that such an approximation can be found in polynomial time for fixed andt, wheret denotes the number of negative eigenvalues of the quadratic term. Our algorithm is polynomial in 1/ for fixedt, and exponential int for fixed. We next look at the special case of knapsack problems, showing that a more efficient (polynomial int) approximation algorithm exists.Part of this work was done while the author was visiting Sandia National Laboratories, Albuquerque, New Mexico, supported by the U.S. Department of Energy under contract DE-AC04-76DP00789. Part of this work was also supported by the Applied Mathematical Sciences Program (KC-04-02) of the Office of Energy Research of the U.S. Department of Energy under grant DE-FG02-86ER25013.A000 and in part by the National Science Foundation, the Air Force Office of Scientific Research, and the Office of Naval Research, through NSF grant DMS 8920550.  相似文献   

6.
Local convergence of interior-point algorithms for degenerate monotone LCP   总被引:1,自引:0,他引:1  
Most asymptotic convergence analysis of interior-point algorithms for monotone linear complementarity problems assumes that the problem is nondegenerate, that is, the solution set contains a strictly complementary solution. We investigate the behavior of these algorithms when this assumption is removed.The work of this author was based on research supported by the National Science Foundation under grant DDM-9109404 and the Office of Naval Research under grant N00014-93-1-0234.The work of this author was based on research supported by the Office of Scientific Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38.  相似文献   

7.
Summary We provide a convergence rate analysis for a variant of the domain decomposition method introduced by Gropp and Keyes for solving the algebraic equations that arise from finite element discretization of nonsymmetric and indefinite elliptic problems with Dirichlet boundary conditions in 2. We show that the convergence rate of the preconditioned GMRES method is nearly optimal in the sense that the rate of convergence depends only logarithmically on the mesh size and the number of substructures, if the global coarse mesh is fine enough.This author was supported by the National Science Foundation under contract numbers DCR-8521451 and ECS-8957475, by the IBM Corporation, and by the 3M Company, while in residence at Yale UniversityThis author was supported by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department of Energy under Contract W-31-109-Eng-38This author was supported by the National Science Foundation under contract number ECS-8957475, by the IBM Corporation, and by the 3M Company  相似文献   

8.
Recently, various interior point algorithms related to the Karmarkar algorithm have been developed for linear programming. In this paper, we first show how this interior point philosophy can be adapted to the linear 1 problem (in which there are no feasibility constraints) to yield a globally and linearly convergent algorithm. We then show that the linear algorithm can be modified to provide aglobally and ultimatelyquadratically convergent algorithm. This modified algorithm appears to be significantly more efficient in practise than a more straightforward interior point approach via a linear programming formulation: we present numerical results to support this claim.This paper was presented at the Third SIAM Conference on Optimization, in Boston, April 1989.Research partially supported by the Applied Mathematical Sciences Research Program (KC-04-02) of the Office of Energy Research of the U.S. Department of Energy under grant DE-FG02-86ER25013.A000, by the U.S. Army Research Office through the Mathematical Sciences Institute, Cornell University, and by the Computational Mathematics Program of the National Science Foundation under grant DMS-8706133.Research partially supported by the U.S. Army Research Office through the Mathematical Sciences Institute, Cornell University and by the Computational Mathematics Program of the National Science Foundation under grant DMS-8706133.  相似文献   

9.
Nonmonotone curvilinear line search methods for unconstrained optimization   总被引:2,自引:0,他引:2  
We present a new algorithmic framework for solving unconstrained minimization problems that incorporates a curvilinear linesearch. The search direction used in our framework is a combination of an approximate Newton direction and a direction of negative curvature. Global convergence to a stationary point where the Hessian matrix is positive semidefinite is exhibited for this class of algorithms by means of a nonmonotone stabilization strategy. An implementation using the Bunch-Parlett decomposition is shown to outperform several other techniques on a large class of test problems.The work of this author was based on research supported by the National Science Foundation Grant CCR-9157632, the Air Force Office of Scientific Research Grant F49620-94-1-0036 and the Department of Energy Grant DE-FG03-94ER61915.These authors were partially supported by Agenzia Spaziale Italiana, Roma, Italy.  相似文献   

10.
Adaptive polynomial preconditioning for hermitian indefinite linear systems   总被引:1,自引:0,他引:1  
This paper explores the use of polynomial preconditioned CG methods for hermitian indefinite linear systems,Ax=b. Polynomial preconditioning is attractive for several reasons. First, it is well-suited to vector and/or parallel architectures. It is also easy to employ, requiring only matrix-vector multiplication and vector addition. To obtain an optimum polynomial preconditioner we solve a minimax approximation problem. The preconditioning polynomial,C(), is optimum in that it minimizes a bound on the condition number of the preconditioned matrix,C(A)A. We also characterize the behavior of this minimax polynomial, which makes possible a thorough understanding of the associated CG methods. This characterization is also essential to the development of an adaptive procedure for dynamically determining the optimum polynomial preconditioner. Finally, we demonstrate the effectiveness of polynomial preconditioning in a variety of numerical experiments on a Cray X-MP/48. Our results suggest that high degree (20–50) polynomials are usually best.This research was supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. Dept. of Energy, by Lawrence Livermore National Laboratory under contract W-7405-ENG-48.This research was supported in part by the Dept. of Energy and the National Science Foundation under grant DMS 8704169.This research was supported in part by U.S. Dept. of Energy grant DEFG02-87ER25026 and by National Science Foundation grant DMS 8703226.  相似文献   

11.
We develop a convergence theory for convex and linearly constrained trust region methods which only requires that the step between iterates produce a sufficient reduction in the trust region subproblem. Global convergence is established for general convex constraints while the local analysis is for linearly constrained problems. The main local result establishes that if the sequence converges to a nondegenerate stationary point then the active constraints at the solution are identified in a finite number of iterations. As a consequence of the identification properties, we develop rate of convergence results by assuming that the step is a truncated Newton method. Our development is mainly geometrical; this approach allows the development of a convergence theory without any linear independence assumptions.Work supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research of the U.S. Department of Energy under Contract W-31-109-Eng-38.Work supported in part by the National Science Foundation grant DMS-8803206 and by the Air Force Office of Scientific Research grant AFSOR-860080.  相似文献   

12.
A procedure is described for preventing cycling in active-set methods for linearly constrained optimization, including the simplex method. The key ideas are a limited acceptance of infeasibilities in all variables, and maintenance of a working feasibility tolerance that increases over a long sequence of iterations. The additional work per iteration is nominal, and stalling cannot occur with exact arithmetic. The method appears to be reliable, based on computational results for the first 53 linear programming problems in theNetlib set.The material contained in this report is based upon research supported by the Air Force Office of Scientific Research Grant 87-01962; the U.S. Department of Energy Grant DE-FG03-87ER25030; National Science Foundation Grants CCR-8413211 and ECS-8715153; and the Office of Naval Research Contract N00014-87-K-0142.  相似文献   

13.
We propose a dual descent method for the problem of minimizing a convex, possibly nondifferentiable, separable cost subject to linear constraints. The method has properties reminiscent of the Gauss-Seidel method in numerical analysis and uses the-complementary slackness mechanism introduced in Bertsekas, Hosein and Tseng (1987) to ensure finite convergence to near optimality. As special cases we obtain the methods in Bertsekas, Hosein and Tseng (1987) for network flow programs and the methods in Tseng and Bertsekas (1987) for linear programs.Work supported by the National Science Foundation under grant NSF-ECS-8519058 and by the Army Research Office under grant DAAL03-86-K-0171.This author is also supported by Canadian NSERC under Grant U0505.  相似文献   

14.
We study the problem of solving a constrained system of nonlinear equations by a combination of the classical damped Newton method for (unconstrained) smooth equations and the recent interior point potential reduction methods for linear programs, linear and nonlinear complementarity problems. In general, constrained equations provide a unified formulation for many mathematical programming problems, including complementarity problems of various kinds and the Karush-Kuhn-Tucker systems of variational inequalities and nonlinear programs. Combining ideas from the damped Newton and interior point methods, we present an iterative algorithm for solving a constrained system of equations and investigate its convergence properties. Specialization of the algorithm and its convergence analysis to complementarity problems of various kinds and the Karush-Kuhn-Tucker systems of variational inequalities are discussed in detail. We also report the computational results of the implementation of the algorithm for solving several classes of convex programs. The work of this author was based on research supported by the National Science Foundation under grants DDM-9104078 and CCR-9213739 and the Office of Naval Research under grant N00014-93-1-0228. The work of this author was based on research supported by the National Science Foundation under grant DMI-9496178 and the Office of Naval Research under grants N00014-93-1-0234 and N00014-94-1-0340.  相似文献   

15.
In this paper, we deal with primal-dual interior point methods for solving the linear programming problem. We present a short-step and a long-step path-following primal-dual method and derive polynomial-time bounds for both methods. The iteration bounds are as usual in the existing literature, namely iterations for the short-step variant andO(nL) for the long-step variant. In the analysis of both variants, we use a new proximity measure, which is closely related to the Euclidean norm of the scaled search direction vectors. The analysis of the long-step method depends strongly on the fact that the usual search directions form a descent direction for the so-called primal-dual logarithmic barrier function.This work was supported by a research grant from Shell, by the Dutch Organization for Scientific Research (NWO) Grant 611-304-028, by the Hungarian National Research Foundation Grant OTKA-2116, and by the Swiss National Foundation for Scientific Research Grant 12-26434.89.  相似文献   

16.
The research described in this paper was supported by research grant DE-FG02-86ER250125 of the Applied Mathematical Science subprogram of Office of Energy Research, U.S. Department of Energy, and National Science Foundation grant DMS-8611574.  相似文献   

17.
The research described in this paper was supported by research grant DE-FG02-86ER250125 of the Applied Mathematical Science subprogram of Office of Energy Research, U.S. Department of Energy, and National Science Foundation grant DMS-8900285.  相似文献   

18.
Truncated-Newton methods are a class of optimization methods suitable for large scale problems. At each iteration, a search direction is obtained by approximately solving the Newton equations using an iterative method. In this way, matrix costs and second-derivative calculations are avoided, hence removing the major drawbacks of Newton's method. In this form, the algorithms are well-suited for vectorization. Further improvements in performance are sought by using block iterative methods for computing the search direction. In particular, conjugate-gradient-type methods are considered. Computational experience on a hypercube computer is reported, indicating that on some problems the improvements in performance can be better than that attributable to parallelism alone.Partially supported by Air Force Office of Scientific Research grant AFOSR-85-0222.Partially supported by National Science Foundation grant ECS-8709795, co-funded by the U.S. Air Force Office of Scientific Research.  相似文献   

19.
We analyze the rate of local convergence of the augmented Lagrangian method in nonlinear semidefinite optimization. The presence of the positive semidefinite cone constraint requires extensive tools such as the singular value decomposition of matrices, an implicit function theorem for semismooth functions, and variational analysis on the projection operator in the symmetric matrix space. Without requiring strict complementarity, we prove that, under the constraint nondegeneracy condition and the strong second order sufficient condition, the rate of convergence is linear and the ratio constant is proportional to 1/c, where c is the penalty parameter that exceeds a threshold . The research of Defeng Sun is partly supported by the Academic Research Fund from the National University of Singapore. The research of Jie Sun and Liwei Zhang is partly supported by Singapore–MIT Alliance and by Grants RP314000-042/057-112 of the National University of Singapore. The research of Liwei Zhang is also supported by the National Natural Science Foundation of China under project grant no. 10471015 and by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China.  相似文献   

20.
This note establishes a new sufficient condition for the existence and uniqueness of the Alizadeh-Haeberly-Overton direction for semidefinite programming. The work of these authors was based on research supported by the National Science Foundation under grants INT-9600343 and CCR-970048 and the Office of Naval Research under grant N00014-94-1-0340.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号