首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
We develop a new modeling and solution method for stochastic programming problems that include a joint probabilistic constraint in which the multirow random technology matrix is discretely distributed. We binarize the probability distribution of the random variables in such a way that we can extract a threshold partially defined Boolean function (pdBf) representing the probabilistic constraint. We then construct a tight threshold Boolean minorant for the pdBf. Any separating structure of the tight threshold Boolean minorant defines sufficient conditions for the satisfaction of the probabilistic constraint and takes the form of a system of linear constraints. We use the separating structure to derive three new deterministic formulations for the studied stochastic problem, and we derive a set of strengthening valid inequalities. A crucial feature of the new integer formulations is that the number of integer variables does not depend on the number of scenarios used to represent uncertainty. The computational study, based on instances of the stochastic capital rationing problem, shows that the mixed-integer linear programming formulations are orders of magnitude faster to solve than the mixed-integer nonlinear programming formulation. The method integrating the valid inequalities in a branch-and-bound algorithm has the best performance.  相似文献   

2.
We present a computationally efficient implementation of an interior point algorithm for solving large-scale problems arising in stochastic linear programming and robust optimization. A matrix factorization procedure is employed that exploits the structure of the constraint matrix, and it is implemented on parallel computers. The implementation is perfectly scalable. Extensive computational results are reported for a library of standard test problems from stochastic linear programming, and also for robust optimization formulations.The results show that the codes are efficient and stable for problems with thousands of scenarios. Test problems with 130 thousand scenarios, and a deterministic equivalent linear programming formulation with 2.6 million constraints and 18.2 million variables, are solved successfully.  相似文献   

3.
This paper considers a class of stochastic second-order-cone complementarity problems (SSOCCP), which are generalizations of the noticeable stochastic complementarity problems and can be regarded as the Karush–Kuhn–Tucker conditions of some stochastic second-order-cone programming problems. Due to the existence of random variables, the SSOCCP may not have a common solution for almost every realization . In this paper, motivated by the works on stochastic complementarity problems, we present a deterministic formulation called the expected residual minimization formulation for SSOCCP. We present an approximation method based on the Monte Carlo approximation techniques and investigate some properties related to existence of solutions of the ERM formulation. Furthermore, we experiment some practical applications, which include a stochastic natural gas transmission problem and a stochastic optimal power flow problem in radial network.  相似文献   

4.
We deal with operational fixed interval scheduling problem with random delays in job processing times. We formulate two stochastic programming problems. In the first problem with a probabilistic objective, all jobs are processed on available machines and the goal is to obtain a schedule with the highest attainable reliability. The second problem is to select a subset of jobs with the highest reward under a chance constraint ensuring feasibility of the schedule with a prescribed probability. We assume that the multivariate distribution of delays follows an Archimedean copula, whereas there are no restrictions on marginal distributions. We introduce new deterministic integer linear reformulations based on flow problems. We compare the formulations with the extended robust coloring problem, which was shown to be a deterministic equivalent to the stochastic programming problem with probabilistic objective by Branda et al. (Comput Ind Eng 93:45–54, 2016). In the numerical study, we report average computational times necessary to solve a large number of simulated instances. It turns out that the new flow-based formulation helps to solve the FIS problems considerably faster than the other one.  相似文献   

5.
We aim at characterizing domains of attraction for controlled piecewise deterministic processes using an occupational measure formulation and Zubov??s approach. Firstly, we provide linear programming (primal and dual) formulations of discounted, infinite horizon control problems for PDMPs. These formulations involve an infinite-dimensional set of probability measures and are obtained using viscosity solutions theory. Secondly, these tools allow to construct stabilizing measures and to avoid the assumption of stability under concatenation for controls. The domain of controllability is then characterized as some level set of a convenient solution of the associated Hamilton-Jacobi integral-differential equation. The theoretical results are applied to PDMPs associated to stochastic gene networks. Explicit computations are given for Cook??s model for gene expression.  相似文献   

6.
We survey in this paper various solution approaches for multiobjective stochastic problems where random variables can be in both objectives and constraints parameters. Once a problem requires a stochastic formulation, a first step consists in transforming the problem into its deterministic formulation. We propose to classify and evaluate such transformations with regards to the many proposed concepts of efficiency. The paper addresses also some applications of the multiobjective stochastic programming models.  相似文献   

7.
Capital rationing is a major problem in managerial decision making. The classical mathematical formulation of the problem relies on a multi-dimensional knapsack model with known input parameters. Since capital rationing is carried out in conditions where uncertainty is the rule rather than the exception, the hypothesis of deterministic data limits the applicability of deterministic formulations in real settings. This paper proposes a stochastic version of the capital rationing problem which explicitly accounts for uncertainty. In particular, a mathematical formulation is provided in the framework of stochastic programming with joint probabilistic constraints and a novel solution approach is proposed. The basic model is also extended to include specific risk measures. Preliminary computational results are presented and discussed.  相似文献   

8.
In this paper we apply stochastic programming modelling and solution techniques to planning problems for a consortium of oil companies. A multiperiod supply, transformation and distribution scheduling problem—the Depot and Refinery Optimization Problem (DROP)—is formulated for strategic or tactical level planning of the consortium's activities. This deterministic model is used as a basis for implementing a stochastic programming formulation with uncertainty in the product demands and spot supply costs (DROPS), whose solution process utilizes the deterministic equivalent linear programming problem. We employ our STOCHGEN general purpose stochastic problem generator to ‘recreate’ the decision (scenario) tree for the unfolding future as this deterministic equivalent. To project random demands for oil products at different spatial locations into the future and to generate random fluctuations in their future prices/costs a stochastic input data simulator is developed and calibrated to historical industry data. The models are written in the modelling language XPRESS-MP and solved by the XPRESS suite of linear programming solvers. From the viewpoint of implementation of large-scale stochastic programming models this study involves decisions in both space and time and careful revision of the original deterministic formulation. The first part of the paper treats the specification, generation and solution of the deterministic DROP model. The stochastic version of the model (DROPS) and its implementation are studied in detail in the second part and a number of related research questions and implications discussed.  相似文献   

9.
We study some mathematical programming formulations for the origin-destination model in airline revenue management. In particular, we focus on the traditional probabilistic model proposed in the literature. The approach we study consists of solving a sequence of two-stage stochastic programs with simple recourse, which can be viewed as an approximation to a multi-stage stochastic programming formulation to the seat allocation problem. Our theoretical results show that the proposed approximation is robust, in the sense that solving more successive two-stage programs can never worsen the expected revenue obtained with the corresponding allocation policy. Although intuitive, such a property is known not to hold for the traditional deterministic linear programming model found in the literature. We also show that this property does not hold for some bid-price policies. In addition, we propose a heuristic method to choose the re-solving points, rather than re-solving at equally-spaced times as customary. Numerical results are presented to illustrate the effectiveness of the proposed approach.  相似文献   

10.
当供应商的生产能力和销售商的需求量是随机参数时,建立了一类产品生产和运输成本问题的数学模型,它是一种随机优化模型.利用机会约束规划方法研究了在给定置信水平和其它相关约束条件时,此类随机优化问题的确定型等价式.给出了每个供应商给每个销售商的送货量,且达到了总运输成本最低.实际案例研究表明所建立的模型和求解方法有效,且分析了不同置信水平下最优值的变化,提供了选择最佳置信水平的方法.  相似文献   

11.
We consider the one-warehouse multi-retailer problem where a warehouse replenishes multiple retailers with deterministic dynamic demands over a horizon. The problem is to determine when and how much to order to the warehouse and retailers such that the total system-wide costs are minimized. We propose a new (combined transportation and shortest path based) integer programming reformulation for the problem in addition to the echelon stock and transportation based formulations in the literature. We analyze the strength of the LP relaxations of three formulations and show that the new formulation is stronger than others. We also show that the new and transportation based formulations are equivalent for the joint replenishment problem, where the warehouse is a crossdocking facility. We extend all formulations to the case with initial inventory at the warehouse and reveal the relation among their LP relaxations. We present our computational experiments with all formulations over a set of randomly generated test instances.  相似文献   

12.
Upon introducing a finite-fuel constraint in a stochastic control system, the convex duality formulation can be set up to represent the original singular control problem as a minimization problem over the space of vector measures at each level of available fuel. This minimization problem is imbedded tightly into a related weak problem, which is actually a mathematical programming problem over a convex,w*-compact space of vector-valued Radon measures. Then, through the Fenchel duality principle, the dual for the finite-fuel control problems is to seek the maximum of smooth subsolutions to a dynamic programming variational inequality. The approach is basically in the spirit of Fleming and Vermes, and the results of this paper extend those of Vinter and Lewis in deterministic control problems to the finite-fuel problems in singular stochastic control. Meanwhile, we also obtain the characterization of the value function as a solution to the dynamic programming variational inequality in the sense of the Schwartz distribution.The author is much indebted to Professor Wendell H. Fleming for his constant support and many helpful discussions during the preparation of this paper.  相似文献   

13.
For a multi-stage stochastic programming problem, one approach is to explore a scenario tree based formulation for the problem and solve the formulation efficiently. There has been significant research progress on how to generate scenario trees in the literature. However, there is limited work on analyzing the computational complexity of the scenario-tree based formulation that considers the number of tree nodes as the input size. In this paper, we use stochastic lot-sizing problems as examples to study the computational complexity issues for the scenario-tree based formulations. We develop production path properties and a general dynamic programming framework based on these properties. The dynamic programming framework allows us to show that the optimal value function is piecewise linear and continuous, which enables us to develop polynomial time algorithms for several different problems, including those with backlogging and varying capacities under certain conditions. As special cases, we develop polynomial time algorithms that run in O(n2){\mathcal{O}(n^2)} and O(n2T log n){\mathcal{O}(n^2T\,{\rm log}\,n)} times, respectively for stochastic uncapacitated and constant capacitated lot-sizing problems with backlogging, regardless of the scenario tree structure.  相似文献   

14.
The nature of hydrologic parameters in reservoir management models is uncertain. In mathematical programming models the uncertainties are dealt with either indirectly (sensitivity analysis of a deterministic model) or directly by applying a chance-constrained type of formulation or some of the stochastic programming techniques (LP and DP based models). Various approaches are reviewed in the paper. Moran's theory of storage is an alternative stochastic modelling approach to mathematical programming techniques. The basis of the approach and its application is presented. Reliability programming is a stochastic technique based on the chance-constrained approach, where the reliabilities of the chance constraints are considered as extra decision variables in the model. The problem of random event treatment in the reservoir management model formulation using reliability programming is addressed in this paper.  相似文献   

15.
We give multi-stage stochastic programming formulations for lot-sizing problems where costs, demands and order lead times follow a general discrete-time stochastic process with finite support. We characterize the properties of an optimal solution and give a dynamic programming algorithm, polynomial in the scenario tree size, when orders do not cross in time.  相似文献   

16.
Truckload (TL) routing has always been a challenge. The TL routing problem (TRP) itself is hard, but the complexity of solving the problem increases due to the stochastic nature of TL demand. It is traditionally approached using single objective solution methodologies that range from linear programming to dynamic programming techniques. This paper presents a deterministic multiple objective formulation of the TRP. A ‘route algebra’ is developed to facilitate the solution procedure, paving the way for the use of goal programming and tabu search techniques.  相似文献   

17.
Once subsurface water supplies become contaminated, designing cost-effective and reliable remediation schemes becomes a difficult task. The combination of finite element simulation of groundwater contaminant transport with nonlinear optimization is one approach to determine the best well selection and optimal fluid withdrawal and injection rates to contain and remove the contaminated water. Both deterministic and stochastic programming problems have been formulated and solved. These tend to be large scale problems, owing to the simulation component which serves as a portion of the constraint set. The overall problem of combined groundwater process simulation and nonlinear optimization is discussed along with example problems. Because the contaminant transport simulation models give highly uncertain results, quantifying their uncertainty and incorporating reliability into the remediation design results in a class of large stochastic nonlinear problems. The reliability problem is beginning to be addressed, and some strategies and formulations involving chance constraints and Monte Carlo methods are presented.  相似文献   

18.
We propose a class of partially observable multistage stochastic programs and describe an algorithm for solving this class of problems. We provide a Bayesian update of a belief-state vector, extend the stochastic programming formulation to incorporate the belief state, and characterize saddle-function properties of the corresponding cost-to-go function. Our algorithm is a derivative of the stochastic dual dynamic programming method.  相似文献   

19.
An interactive approach to the formulation, modeling, analysis, and solution of discrete deterministic dynamic programming problems is presented. The approach utilizes APL both as the mathematical and the programming language. The interactive capabilities of APL and the simple one-to-one correspondence between the programming and the mathematical language provide an extremely convenient environment for dynamic programming investigations in general and for teaching/learning purposes in particular. The approach is illustrated by a simple model and a numerical example.  相似文献   

20.
Using the decomposition of solution of SDE, we consider the stochastic optimal control problem with anticipative controls as a family of deterministic control problems parametrized by the paths of the driving Wiener process and of a newly introduced Lagrange multiplier stochastic process (nonanticipativity equality constraint). It is shown that the value function of these problems is the unique global solution of a robust equation (random partial differential equation) associated to a linear backward Hamilton-Jacobi-Bellman stochastic partial differential equation (HJB SPDE). This appears as limiting SPDE for a sequence of random HJB PDE's when linear interpolation approximation of the Wiener process is used. Our approach extends the Wong-Zakai type results [20] from SDE to the stochastic dynamic programming equation by showing how this arises as average of the limit of a sequence of deterministic dynamic programming equations. The stochastic characteristics method of Kunita [13] is used to represent the value function. By choosing the Lagrange multiplier equal to its nonanticipative constraint value the usual stochastic (nonanticipative) optimal control and optimal cost are recovered. This suggests a method for solving the anticipative control problems by almost sure deterministic optimal control. We obtain a PDE for the “cost of perfect information” the difference between the cost function of the nonanticipative control problem and the cost of the anticipative problem which satisfies a nonlinear backward HJB SPDE. Poisson bracket conditions are found ensuring this has a global solution. The cost of perfect information is shown to be zero when a Lagrangian submanifold is invariant for the stochastic characteristics. The LQG problem and a nonlinear anticipative control problem are considered as examples in this framework  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号