首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
A 2-coloring is a coloring of vertices of a graph with colors 1 and 2. Define Vi?{vV(G):c(v)=i} for i=1 and 2. We say that G is (d1,d2)-colorable if G has a 2-coloring such that Vi is an empty set or the induced subgraph G[Vi] has the maximum degree at most di for i=1 and 2. Let G be a planar graph without 4-cycles and 5-cycles. We show that the problem to determine whether G is (0,k)-colorable is NP-complete for every positive integer k. Moreover, we construct non-(1,k)-colorable planar graphs without 4-cycles and 5-cycles for every positive integer k. In contrast, we prove that G is (d1,d2)-colorable where (d1,d2)=(4,4),(3,5), and (2,9).  相似文献   

3.
For bipartite graphs G1,G2,,Gk, the bipartite Ramsey number b(G1,G2,,Gk) is the least positive integer b so that any coloring of the edges of Kb,b with k colors will result in a copy of Gi in the ith color for some i. In this paper, our main focus will be to bound the following numbers: b(C2t1,C2t2) and b(C2t1,C2t2,C2t3) for all ti3,b(C2t1,C2t2,C2t3,C2t4) for 3ti9, and b(C2t1,C2t2,C2t3,C2t4,C2t5) for 3ti5. Furthermore, we will also show that these mentioned bounds are generally better than the bounds obtained by using the best known Zarankiewicz-type result.  相似文献   

4.
5.
6.
7.
8.
9.
We say a graph is (d,d,,d,0,,0)-colorable with a of d’s and b of 0’s if V(G) may be partitioned into b independent sets O1,O2,,Ob and a sets D1,D2,,Da whose induced graphs have maximum degree at most d. The maximum average degree, mad(G), of a graph G is the maximum average degree over all subgraphs of G. In this note, for nonnegative integers a,b, we show that if mad(G)<43a+b, then G is (11,12,,1a,01,,0b)-colorable.  相似文献   

10.
For i=2,3 and a cubic graph G let νi(G) denote the maximum number of edges that can be covered by i matchings. We show that ν2(G)45|V(G)| and ν3(G)76|V(G)|. Moreover, it turns out that ν2(G)|V(G)|+2ν3(G)4.  相似文献   

11.
12.
In a pursuit evasion game on a finite, simple, undirected, and connected graph G, a first player visits vertices m1,m2, of G, where mi+1 is in the closed neighborhood of mi for every i, and a second player probes arbitrary vertices c1,c2, of G, and learns whether or not the distance between ci+1 and mi+1 is at most the distance between ci and mi. Up to what distance d can the second player determine the position of the first? For trees of bounded maximum degree and grids, we show that d is bounded by a constant. We conjecture that d=O(logn) for every graph G of order n, and show that d=0 if mi+1 may differ from mi only if i is a multiple of some sufficiently large integer.  相似文献   

13.
14.
15.
16.
The conservative number of a graph G is the minimum positive integer M, such that G admits an orientation and a labeling of its edges by distinct integers in {1,2,,M}, such that at each vertex of degree at least three, the sum of the labels on the in-coming edges is equal to the sum of the labels on the out-going edges. A graph is conservative if M=|E(G)|. It is worth noting that determining whether certain biregular graphs are conservative is equivalent to find integer Heffter arrays.In this work we show that the conservative number of a galaxy (a disjoint union of stars) of size M is M for M0, 3(mod4), and M+1 otherwise. Consequently, given positive integers m1, m2, …, mn with mi3 for 1in, we construct a cyclic (m1,m2,,mn)-cycle system of infinitely many circulant graphs, generalizing a result of Bryant, Gavlas and Ling (2003). In particular, it allows us to construct a cyclic (m1,m2,,mn)-cycle system of the complete graph K2M+1, where M=i=1nmi. Also, we prove necessary and sufficient conditions for the existence of a cyclic (m1,m2,,mn)-cycle system of K2M+2?F, where F is a 1-factor. Furthermore, we give a sufficient condition for a subset of Zv?{0} to be sequenceable.  相似文献   

17.
The Catalan numbers occur in various counting problems in combinatorics. This paper reveals a connection between the Catalan numbers and list colouring of graphs. Assume G is a graph and f:V(G)N is a mapping. For a nonnegative integer m, let f(m) be the extension of f to the graph G
 Km¯ for which f(m)(v)=|V(G)| for each vertex v of Km¯. Let mc(G,f) be the minimum m such that G
 Km¯ is not f(m)-choosable and mp(G,f) be the minimum m such that G
 Km¯ is not f(m)-paintable. We study the parameter mc(Kn,f) and mp(Kn,f) for arbitrary mappings f. For x=(x1,x2,,xn), an x-dominated path ending at (a,b) is a monotonic path P of the a×b grid from (0,0) to (a,b) such that each vertex (i,j) on P satisfies ixj+1. Let ψ(x) be the number of x-dominated paths ending at (xn,n). By this definition, the Catalan number Cn equals ψ((0,1,,n?1)). This paper proves that if G=Kn has vertices v1,v2,,vn and f(v1)f(v2)f(vn), then mc(G,f)=mp(G,f)=ψ(x(f)), where x(f)=(x1,x2,,xn) and xi=f(vi)?i for i=1,2,,n. Therefore, if f(vi)=n, then mc(Kn,f)=mp(Kn,f) equals the Catalan number Cn. We also show that if G=G1G2?Gp is the disjoint union of graphs G1,G2,,Gp and f=f1f2?fp, then mc(G,f)=i=1pmc(Gi,fi) and mp(G,f)=i=1pmp(Gi,fi). This generalizes a result in Carraher et al. (2014), where the case each Gi is a copy of K1 is considered.  相似文献   

18.
19.
An edge-coloured graph G is called properly connected if any two vertices are connected by a path whose edges are properly coloured. The proper connection number of a connected graph G, denoted by pc(G), is the smallest number of colours that are needed in order to make G properly connected. Our main result is the following: Let G be a connected graph of order n and k2. If |E(G)|n?k?12+k+2, then pc(G)k except when k=2 and G{G1,G2}, where G1=K1(2K1+K2) and G2=K1(K1+2K2).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号