首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The paper deals with the dynamics of a spherical rolling robot actuated by internal rotors that are placed on orthogonal axes. The driving principle for such a robot exploits nonholonomic constraints to propel the rolling carrier. A full mathematical model as well as its reduced version are derived, and the inverse dynamics are addressed. It is shown that if the rotors are mounted on three orthogonal axes, any feasible kinematic trajectory of the rolling robot is dynamically realizable. For the case of only two rotors the conditions of controllability and dynamic realizability are established. It is shown that in moving the robot by tracing straight lines and circles in the contact plane the dynamically realizable trajectories are not represented by the circles on the sphere, which is a feature of the kinematic model of pure rolling. The implication of this fact to motion planning is explored under a case study. It is shown there that in maneuvering the robot by tracing circles on the sphere the dynamically realizable trajectories are essentially different from those resulted from kinematic models. The dynamic motion planning problem is then formulated in the optimal control settings, and properties of the optimal trajectories are illustrated under simulation.  相似文献   

2.
《Applied Mathematical Modelling》2014,38(21-22):5298-5314
In this study, a novel approach to robot navigation/planning by using half-cell electrochemical potentials is presented. The half-cell electrode’s potential is modelled by the Nernst equation to yield automatic search/detection of pipeline flaws by using the direct current voltage gradient (DCVG) technique. We introduce a theory of spherical volumetric electric density in the soil to sustain our postulates for navigational potential fields. The Nernst potential is correlated with the distance to a pipe’s flaw by proposing a fitted theoretical-empirical nonlinear regression model. From this, volumetric derivatives are solved as gradient-based fields to control wheeled robot’s motion. A nonlinear system for trajectory planning is proposed, and analytically solved by an algebraic solution. This solution directly adjust robot’s speed kinematic values to lead it toward the flaw. The inverse/forward kinematic constraints are non-holonomic, and are recursively integrated into the general potential equation. Analytical modelling is reported, and a set of numerical simulations are presented to prove the feasibility of the proposed formulations.  相似文献   

3.
This work deals with the modelling and control of the motion of a disk rolling without slipping on a rigid spherical dome. It is assumed here that the motion of the disk is controlled by a tilting moment, a directional moment, and a pedalling moment. First, a mathematical model of the motion of the disk rolling on the dome is derived. Then, by using a kind of an inverse control transformation, a control strategy is proposed under which the motion of the disk is stabilized and is able asymptotically to track any smooth trajectory which is located on the spherical dome.  相似文献   

4.
Omnidirectional walking of legged robots with a failed leg   总被引:1,自引:0,他引:1  
This paper studies omnidirectional walking of a hexapod robot with a locked joint failure by proposing crab gaits and turning gaits. Due to the reduced workspace of a failed leg, fault-tolerant gaits have limitations in their mobility. As for crab gaits, an accessible range of the crab angle is derived for a given configuration of the failed leg. As for turning gaits, the conditions on turning trajectories guaranteeing fault tolerance are derived for spinning gaits and circling gaits. Based on the principles of fault-tolerant gait planning, periodic crab gaits and turning gaits are proposed in which a hexapod robot realizes tripod walking after a locked joint failure, having a reasonable stride length and stability margin. The proposed fault-tolerant gaits are then applied to an obstacle avoidance problem of a hexapod robot with a locked joint failure. The kinematic constraints of fault-tolerant gaits should be considered in planning the robot trajectory.  相似文献   

5.
Geometric Kinematic Control of a Spherical Rolling Robot   总被引:1,自引:0,他引:1  
We give a geometric account of kinematic control of a spherical rolling robot controlled by two internal wheels just like the toy robot Sphero. Particularly, we introduce the notion of shape space and fibers to the system by exploiting its symmetry and the principal bundle structure of its configuration space; the shape space encodes the rotational angles of the wheels, whereas each fiber encodes the translational and rotational configurations of the robot for a particular shape. We show that the system is fiber controllable—meaning any translational and rotational configuration modulo shapes is reachable—as well as find exact expressions of the geometric phase or holonomy under some particular controls. We also solve an optimal control problem of the spherical robot, show that it is completely integrable, and find an explicit solution of the problem.  相似文献   

6.
Computing globally efficient solutions is a major challenge in optimal control of nonlinear dynamical systems. This work proposes a method combining local optimization and motion planning techniques based on exploiting inherent dynamical systems structures, such as symmetries and invariant manifolds. Prior to the optimal control, the dynamical system is analyzed for structural properties that can be used to compute pieces of trajectories that are stored in a motion planning library. In the context of mechanical systems, these motion planning candidates, termed primitives, are given by relative equilibria induced by symmetries and motions on stable or unstable manifolds of e.g. fixed points in the natural dynamics. The existence of controlled relative equilibria is studied through Lagrangian mechanics and symmetry reduction techniques. The proposed framework can be used to solve boundary value problems by performing a search in the space of sequences of motion primitives connected using optimized maneuvers. The optimal sequence can be used as an admissible initial guess for a post-optimization. The approach is illustrated by two numerical examples, the single and the double spherical pendula, which demonstrates its benefit compared to standard local optimization techniques.  相似文献   

7.
We present the results of theoretical and experimental investigations of the motion of a spherical robot on a plane. The motion is actuated by a platform with omniwheels placed inside the robot. The control of the spherical robot is based on a dynamic model in the nonholonomic statement expressed as equations of motion in quasivelocities with indeterminate coefficients. A number of experiments have been carried out that confirm the adequacy of the dynamic model proposed.  相似文献   

8.
We discuss explicit integration and bifurcation analysis of two non-holonomic problems. One of them is the Chaplygin’s problem on no-slip rolling of a balanced dynamically non-symmetric ball on a horizontal plane. The other, first posed by Yu. N. Fedorov, deals with the motion of a rigid body in a spherical support. For Chaplygin’s problem we consider in detail the transformation that Chaplygin used to integrate the equations when the constant of areas is zero. We revisit Chaplygin’s approach to clarify the geometry of this very important transformation, because in the original paper the transformation looks a cumbersome collection of highly non-transparent analytic manipulations. Understanding its geometry seriously facilitate the extension of the transformation to the case of a rigid body in a spherical support — the problem where almost no progress has been made since Yu.N. Fedorov posed it in 1988. In this paper we show that extending the transformation to the case of a spherical support allows us to integrate the equations of motion explicitly in terms of quadratures, detect mostly remarkable critical trajectories and study their stability, and perform an exhaustive qualitative analysis of motion. Some of the results may find their application in various technical devices and robot design. We also show that adding a gyrostat with constant angular momentum to the spherical-support system does not affect its integrability.  相似文献   

9.
The paper investigates the motion planning of a suspended service robot platform equipped with ducted fan actuators. The platform consists of an RRT robot and a cable suspended swinging actuator that form a subsequent parallel kinematic chain and it is equipped with ducted fan actuators. In spite of the complementary ducted fan actuators, the system is under-actuated. The method of computed torques is applied to control the motion of the robot.The under-actuated systems have less control inputs than degrees of freedom. We assume that the investigated under-actuated system has desired outputs of the same number as inputs. In spite of the fact that the inverse dynamical calculation leads to the solution of a system of differential–algebraic equations (DAE), the desired control inputs can be determined uniquely by the method of computed torques.We use natural (Cartesian) coordinates to describe the configuration of the robot, while a set of algebraic equations represents the geometric constraints. In this modeling approach the mathematical model of the dynamical system itself is also a DAE.The paper discusses the inverse dynamics problem of the complex hybrid robotic system. The results include the desired actuator forces as well as the nominal coordinates corresponding to the desired motion of the carried payload. The method of computed torque control with a PD controller is applied to under-actuated systems described by natural coordinates, while the inverse dynamics is solved via the backward Euler discretization of the DAE system for which a general formalism is proposed. The results are compared with the closed form results obtained by simplified models of the system. Numerical simulation and experiments demonstrate the applicability of the presented concepts.  相似文献   

10.
The local and global geometric properties of spherical coupler curves constitute spherical kinematics of spherical four-bar linkages, which can be adopted to reveal distribution characteristics of spherical coupler curves. New unified spherical adjoint approach is established in the paper to study both the local and global geometric properties in order to enrich the atlas of spherical coupler curves with geometric characteristics. Since the constraint curve of spherical four-bar linkage is a simple spherical circle and the spherical centrodes imply intrinsic properties of spherical motion of the coupler link, they are in their turn taken as the original curves in spherical adjoint approach to derive the geodesic curvature and analyze the local geometric characteristics of the spherical coupler curves. The conditions for different spherical double points, such as spherical crunodes, tacnodes and cusps of the spherical coupler curve are derived through the spherical adjoint approach. The spherical surface of the coupler link can be divided into several areas by the spherical moving centrode and the spherical tacnode's tracer curve. The points in each area trace spherical coupler curves with a specific shape. The characteristic points, which trace spherical coupler curves with cusp, geodesic inflection point, spherical Ball point, spherical Burmester point, crunode and tacnode can be readily located in the coupler link by the modelling procedure and the derived condition equations. In the end the distribution of spherical coupler curves with both local and global characteristics is elaborated. The research proposes systematic geometric properties of spherical coupler curves based on the new established approach, and provides a solid theoretical basis for the kinematic analysis and synthesis of the spherical four-bar linkages.  相似文献   

11.
The current research work has employed an evolutionary based novel navigational strategy to trace the collision free near optimal path for underwater robot in a three-dimensional scenario. The population based harmony search algorithm has been dynamically adapted and used to search next global best pose for underwater robot while obstacle is identified near about robot’s current pose. Each pose is evaluated based on their respective value for objective function which incorporates features of path length minimization as well as obstacle avoidance. Dynamic adaptation of control parameters and new perturbation schemes for solution vectors of harmony search has been proposed to strengthen both exploitation and randomization ability of present search process in a balanced manner. Such adaptive tuning process has found to be more effective for avoiding early convergence during underwater motion in comparison with performances of other popular variants of Harmony Search. The proposed path planning method has also shown better navigational performance in comparison with improved version of ant colony optimization and heuristic potential field method for avoiding static obstacles of different shape and sizes during underwater motion. Simulation studies and corresponding experimental verification for three-dimensional navigation are performed to check the accuracy, robustness and efficiency of proposed dynamically adaptive harmony search algorithm.  相似文献   

12.
This paper presents a method for kinematic generation of free-form ruled surfaces. The method is based on the kinematic displacement of lines. The ruled surfaces are represented as curves on a dual unit sphere. The curves are created by using the Lie Group structure of the dual space to generate dual displacement matrices for the lines. Free-form surfaces are created by repeated geodesic interpolation using the displacement matrices. An application for these surfaces is presented in five-axis cylindrical milling.  相似文献   

13.
The paper is concerned with the problem of stabilizing a spherical robot of combined type during its motion. The focus is on the application of feedback for stabilization of the robot which is an example of an underactuated system. The robot is set in motion by an internal wheeled platform with a rotor placed inside the sphere. The results of experimental investigations for a prototype of the spherical robot are presented.  相似文献   

14.
To perform specific tasks in dynamic environments, robots are required to rapidly update trajectories according to changing factors. A continuous trajectory planning methodology for serial manipulators based on non-convex global optimization is presented in this paper. First, a kinematic trajectory planning model based on non-convex optimization is constructed to balance motion rapidity and safety. Then, a model transformation method for the non-convex optimization model is presented. In this way, the accurate global solution can be obtained with an iterative solver starting from arbitrary initializations, which can greatly improve the computational accuracy and efficiency. Furthermore, an efficient initialization method for the iterative solver based on multivariable-multiple regression is presented, which further speeds up the solution process. The results show that trajectory planning efficiency is significantly enhanced by model transformation and initialization improvement for the iterative solver. Consequently, real-time continuous trajectory planning for serial manipulators with many degrees of freedom can be achieved, which lays a basis for performing dynamic tasks in complex environments.  相似文献   

15.
The development of robot or character motion tracking algorithms is inherently a challenging task. This is more than ever true when the latest trends in motion tracking are considered. Some researchers can deal with kinematic and dynamic constraints induced by the mechanical structure. Another class of researchers fulfills various types of optimality conditions, yet others include means of dealing with uncertainties about the robot or character and its environment. In order to deal with the complexity of developing motion tracking algorithms, it is proposed in this paper to design an interactive virtual physics environment with uncertainties for motion tracking based on sliding mode control. The advantages of doing so are outlined and a virtual environment presented which is well suited to support motion tracking development. The environment makes full use of multi-body system dynamics and a robust sliding mode controller independent of model as simulation kernel. So the environment is capable of simulating setups which fulfill the requirements posed by state-of-the-art motion tracking algorithm development. The demonstration results verified the validity of the environment.  相似文献   

16.
In this contribution the control behavior of a special construction of a parallel robot, called multi-axes test facility, is investigated. After a brief discussion of the different tasks of the robot the construction of the robot is briefly presented. To solve the tasks, different control algorithms are derived based on model equations of different complexity of the robot. Depending on the task to be performed by the robot, the controllers compensate the kinematic and/or kinetic coupling of the degrees of freedom of the robot, stabilize the system and achieve the desired spatial motion of each degree of freedom as well as sufficient robustness with respect to parameter uncertainties and load variations. A few results obtained in computer simulations and laboratory experiments are presented and judged with respect to the quality of control, the closeness to reality of the computer simulations, and the amount of costs and work needed to realize the different solutions.  相似文献   

17.
The articulated robot ElRob, consisting of flexible links and joints, is considered in several publications. Recent developments are presented in this work. The overall goal of the research is to decrease the effects of structural elasticities in lightweight robots. For this purpose model-based control concepts are investigated and very accurate and efficient kinematic and dynamic models are necessary. The robot is split into groups of bodies, the so called subsystems, with separated describing velocities and coordinate systems. To obtain structured equations of motion the Projection Equation is used. The beams are modelled using the floating frame of reference formulation and a Ritz-approach. Because of its flexibility, the examined robot is an underactuated system leading to special difficulties. As an example is it not possible to compute the desired joint angles with respect to a reference path in task space for the flexible system (inverse kinematic problem). Different methods to solve this drawback and other problems resulting from flexibility are discussed with special focus on feed forward control and different feedback control concepts. The resulting end point error, the necessary control input and other interesting results for the laboratory experiment are presented and compared. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
This study focused on the Takagi–Sugeno (T–S) fuzzy-model-based control design for the differentially-driven wheeled mobile robot with visual odometry. The position and posture of the mobile robot are estimated by visual odometry. The polar kinematic model of the mobile robot is exactly converted to the T–S fuzzy model and then the fuzzy control design is synthesized to the fuzzy model. The sequentially switched fuzzy control design includes turning, forward motion as well as position and posture control modes. The stabilization is guaranteed based on the Lyapunov stability criterion. The practical constraints on the visual odometry are also satisfied in the control design. Finally, the experiment results demonstrate the effectiveness of the fuzzy-model-based control design for the mobile robot with visual odometry.  相似文献   

19.
The following article focuses on biped robot simulation and control over combined trajectory paths with the aid of mathematical modeling methods focusing on the effects of hip height over torso’s modified motion. The mathematical simulation has been exploited to interpolate the combined trajectory of the robot path with the given breakpoints using inverse kinematic and dynamic methods to determine ZMP and stability treatments. After the robot’s combined path determination, a third-order spline is utilized because of its high precision and ability to calculate the kinematic, dynamic and control parameters. With the aid of this software, common parameters such as joint angles and inertial forces for the given specifications and nominal conditions are calculated and simulated.  相似文献   

20.
This paper is concerned with mathematical modeling and optimal motion designing of flexible mobile manipulators. The system is composed of a multiple flexible links and flexible revolute joints manipulator mounted on a mobile platform. First, analyzing on kinematics and dynamics of the model is carried out then; open-loop optimal control approach is presented for optimal motion designing of the system. The problem is known to be complex since combined motion of the base and manipulator, non-holonomic constraint of the base and highly non-linear and complicated dynamic equations as a result of the flexible nature of both links and joints are taken into account. In the proposed method, the generalized coordinates and additional kinematic constraints are selected in such a way that the base motion coordination along the predefined path is guaranteed while the optimal motion trajectory of the end-effector is generated. This method by using Pontryagin’s minimum principle and deriving the optimality conditions converts the optimal control problem into a two point boundary value problem. A comparative assessment of the dynamic model is validated through computer simulations, and then additional simulations are done for trajectory planning of a two-link flexible mobile manipulator to demonstrate effectiveness and capability of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号