首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper discusses two stochastic approaches to computing the propagation of uncertainty in numerical simulations: polynomial chaos and stochastic collocation. Chebyshev polynomials are used in both cases for the conventional, deterministic portion of the discretization in physical space. For the stochastic parameters, polynomial chaos utilizes a Galerkin approximation based upon expansions in Hermite polynomials, whereas stochastic collocation rests upon a novel transformation between the stochastic space and an artificial space. In our present implementation of stochastic collocation, Legendre interpolating polynomials are employed. These methods are discussed in the specific context of a quasi-one-dimensional nozzle flow with uncertainty in inlet conditions and nozzle shape. It is shown that both stochastic approaches efficiently handle uncertainty propagation. Furthermore, these approaches enable computation of statistical moments of arbitrary order in a much more effective way than other usual techniques such as the Monte Carlo simulation or perturbation methods. The numerical results indicate that the stochastic collocation method is substantially more efficient than the full Galerkin, polynomial chaos method. Moreover, the stochastic collocation method extends readily to highly nonlinear equations. An important application is to the stochastic Riemann problem, which is of particular interest for spectral discontinuous Galerkin methods.  相似文献   

2.
In the paper, we apply the generalized polynomial chaos expansion and spectral methods to the Burgers equation with a random perturbation on its left boundary condition. Firstly, the stochastic Galerkin method combined with the Legendre–Galerkin Chebyshev collocation scheme is adopted, which means that the original equation is transformed to the deterministic nonlinear equations by the stochastic Galerkin method and the Legendre–Galerkin Chebyshev collocation scheme is used to deal with the resulting nonlinear equations. Secondly, the stochastic Legendre–Galerkin Chebyshev collocation scheme is developed for solving the stochastic Burgers equation; that is, the stochastic Legendre–Galerkin method is used to discrete the random variable meanwhile the nonlinear term is interpolated through the Chebyshev–Gauss points. Then a set of deterministic linear equations can be obtained, which is in contrast to the other existing methods for the stochastic Burgers equation. The mean square convergence of the former method is analyzed. Numerical experiments are performed to show the effectiveness of our two methods. Both methods provide alternative approaches to deal with the stochastic differential equations with nonlinear terms.  相似文献   

3.
The demand for computational efficiency and reduced cost presents a big challenge for the development of more applicable and practical approaches in the field of uncertainty model updating. In this article, a computationally efficient approach, which is a combination of Stochastic Response Surface Method (SRSM) and Monte Carlo inverse error propagation, for stochastic model updating is developed based on a surrogate model. This stochastic surrogate model is determined using the Hermite polynomial chaos expansion and regression-based efficient collocation method. This paper addresses the critical issue of effectiveness and efficiency of the presented method. The efficiency of this method is demonstrated as a large number of computationally demanding full model simulations are no longer essential, and instead, the updating of parameter mean values and variances is implemented on the stochastic surrogate model expressed as an explicit mathematical expression. A three degree-of-freedom numerical model and a double-hat structure formed by a number of bolted joints are employed to illustrate the implementation of the method. Using the Monte Carlo-based method as the benchmark, the effectiveness and efficiency of the proposed method is verified.  相似文献   

4.
In this study, one-dimensional stochastic Korteweg–de Vries equation with uncertainty in its forcing term is considered. Extending the Wiener chaos expansion, a numerical algorithm based on orthonormal polynomials from the Askey scheme is derived. Then dependence of polynomial chaos on the distribution type of the random forcing term is inspected. It is numerically shown that when Hermite (Laguerre or Jacobi) polynomial chaos is chosen as a basis in the Gaussian (Gamma or Beta, respectively) random space for uncertainty, the solution to the KdV equation converges exponentially. If a proper polynomial chaos is not used, however, the solution converges with slower rate.  相似文献   

5.
Recent developments in the field of stochastic mechanics and particularly regarding the stochastic finite element method allow to model uncertain behaviours for more complex engineering structures. In reliability analysis, polynomial chaos expansion is a useful tool because it helps to avoid thousands of time-consuming finite element model simulations for structures with uncertain parameters. The aim of this paper is to review and compare available techniques for both the construction of polynomial chaos and its use in computing failure probability. In particular, we compare results for the stochastic Galerkin method, stochastic collocation, and the regression method based on Latin hypercube sampling with predictions obtained by crude Monte Carlo sampling. As an illustrative engineering example, we consider a simple frame structure with uncertain parameters in loading and geometry with prescribed distributions defined by realistic histograms.  相似文献   

6.
We apply the Monte Carlo, stochastic Galerkin, and stochastic collocation methods to solving the drift-diffusion equations coupled with the Poisson equation arising in semiconductor devices with random rough surfaces. Instead of dividing the rough surface into slices, we use stochastic mapping to transform the original deterministic equations in a random domain into stochastic equations in the corresponding deterministic domain. A finite element discretization with the help of AFEPack is applied to the physical space, and the equations obtained are solved by the approximate Newton iterative method. Comparison of the three stochastic methods through numerical experiment on different PN junctions are given. The numerical results show that, for such a complicated nonlinear problem, the stochastic Galerkin method has no obvious advantages on efficiency except accuracy over the other two methods, and the stochastic collocation method combines the accuracy of the stochastic Galerkin method and the easy implementation of the Monte Carlo method.  相似文献   

7.
We present an efficient method for the numerical realization of elliptic PDEs in domains depending on random variables. Domains are bounded, and have finite fluctuations. The key feature is the combination of a fictitious domain approach and a polynomial chaos expansion. The PDE is solved in a larger, fixed domain (the fictitious domain), with the original boundary condition enforced via a Lagrange multiplier acting on a random manifold inside the new domain. A (generalized) Wiener expansion is invoked to convert such a stochastic problem into a deterministic one, depending on an extra set of real variables (the stochastic variables). Discretization is accomplished by standard mixed finite elements in the physical variables and a Galerkin projection method with numerical integration (which coincides with a collocation scheme) in the stochastic variables. A stability and convergence analysis of the method, as well as numerical results, are provided. The convergence is “spectral” in the polynomial chaos order, in any subdomain which does not contain the random boundaries.  相似文献   

8.
The article mainly concerns modeling the stochastic input and its propagation in incompressible Navier‐Stokes(N‐S) flow simulations. The stochastic input is represented spectrally by employing orthogonal polynomial functionals from the Askey scheme as trial basis to represent the random space. A standard Galerkin projection is applied in the random dimension to derive the equations in the weak form. The resulting set of deterministic equations is then solved with standard methods to obtain the mean solution and variance of the stochastic velocity. In this article, the main method employs the Hermite polynomial as the basis in random space. Cavity problems are given to demonstrate the process of numerical simulation. Furthermore, Monte‐Carlo simulation method is applied to illustrate the accurate numerical results. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

9.
We consider the problem of scattering of a time-harmonic acoustic incident plane wave by a sound soft convex polygon. For standard boundary or finite element methods, with a piecewise polynomial approximation space, the computational cost required to achieve a prescribed level of accuracy grows linearly with respect to the frequency of the incident wave. Recently Chandler–Wilde and Langdon proposed a novel Galerkin boundary element method for this problem for which, by incorporating the products of plane wave basis functions with piecewise polynomials supported on a graded mesh into the approximation space, they were able to demonstrate that the number of degrees of freedom required to achieve a prescribed level of accuracy grows only logarithmically with respect to the frequency. Here we propose a related collocation method, using the same approximation space, for which we demonstrate via numerical experiments a convergence rate identical to that achieved with the Galerkin scheme, but with a substantially reduced computational cost.  相似文献   

10.
提出了一种嵌入式多项式混沌展开(polynomial chaos expansion, PCE)的随机边界条件下流动与传热问题不确定性量化方法及有限元程序框架.该方法利用Karhunen-Loeve展开表达随机输入边界条件,以及嵌入式多项式混沌展开法表达输出随机场;同时利用谱分解技术将控制方程转化为一组确定性控制方程,并对每个多项式混沌进行求解得到其统计特征.与Monte-Carlo法相比,该方法能够准确高效地预测随机边界条件下流动与传热问题的不确定性特征,同时可以节省大量计算资源.  相似文献   

11.
This article presents a practical refinement of generalized polynomial chaos expansion for uncertainty quantification under dependent input random variables. Unlike the Rodrigues-type formula, which exists for select probability measures, a three-step computational algorithm is put forward to generate a sequence of any approximate measure-consistent multivariate orthonormal polynomials. For uncertainty quantification analysis under dependent random variables, two regression methods, comprising existing standard least-squares and newly developed partitioned diffeomorphic modulation under observable response preserving homotopy (D-MORPH), are proposed to estimate the coefficients of generalized polynomial chaos expansion for the very first time. In contrast to the existing regression devoted so far to the classical polynomial chaos expansion, no tensor-product structure is required or enforced. The partitioned D-MORPH regression is applicable to either an underdetermined or overdetermined system, thus substantially enhancing the ability of the original D-MORPH regression. Numerical results obtained for Gaussian and non-Gaussian probability measures with rectangular or non-rectangular domains point to highly accurate orthonormal polynomials produced by the three-step algorithm. More significantly, the generalized polynomial chaos approximations of mathematical functions and stochastic responses from solid-mechanics problems, in tandem with the partitioned D-MORPH regression, provide excellent estimates of the second-moment properties and reliability from only hundreds of function evaluations or finite element analyses.  相似文献   

12.
This paper deals with solving a boundary value problem for the Darcy equation with a random hydraulic conductivity field.We use an approach based on polynomial chaos expansion in a probability space of input data.We use a probabilistic collocation method to calculate the coefficients of the polynomial chaos expansion. The computational complexity of this algorithm is determined by the order of the polynomial chaos expansion and the number of terms in the Karhunen–Loève expansion. We calculate various Eulerian and Lagrangian statistical characteristics of the flow by the conventional Monte Carlo and probabilistic collocation methods. Our calculations show a significant advantage of the probabilistic collocation method over the directMonte Carlo algorithm.  相似文献   

13.
This article mainly concerns modeling the stochastic input and its propagation in incompressible Navier‐Stokes(N‐S) flow simulations. The stochastic input is represented spectrally by employing orthogonal polynomial functionals from the Askey scheme as trial basis to represent the random space. A standard Galerkin projection is applied in the random dimension to derive the equations in the weak form. The resulting set of deterministic equations is then solved with standard methods to obtain the mean solution. In this article, the main method employs the Hermite polynomial as the basis in random space. Numerical examples are given and the error analysis is demonstrated for a model problem. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

14.
In this paper we propose and analyze a stochastic collocation method for solving the second order wave equation with a random wave speed and subjected to deterministic boundary and initial conditions. The speed is piecewise smooth in the physical space and depends on a finite number of random variables. The numerical scheme consists of a finite difference or finite element method in the physical space and a collocation in the zeros of suitable tensor product orthogonal polynomials (Gauss points) in the probability space. This approach leads to the solution of uncoupled deterministic problems as in the Monte Carlo method. We consider both full and sparse tensor product spaces of orthogonal polynomials. We provide a rigorous convergence analysis and demonstrate different types of convergence of the probability error with respect to the number of collocation points for full and sparse tensor product spaces and under some regularity assumptions on the data. In particular, we show that, unlike in elliptic and parabolic problems, the solution to hyperbolic problems is not in general analytic with respect to the random variables. Therefore, the rate of convergence may only be algebraic. An exponential/fast rate of convergence is still possible for some quantities of interest and for the wave solution with particular types of data. We present numerical examples, which confirm the analysis and show that the collocation method is a valid alternative to the more traditional Monte Carlo method for this class of problems.  相似文献   

15.
Stochastic spectral methods are widely used in uncertainty propagation thanks to its ability to obtain highly accurate solution with less computational demand. A novel hybrid spectral method is proposed here that combines generalized polynomial chaos (gPC) and operational matrix approaches. The hybrid method takes advantage of gPC’s efficient handling of large parameter uncertainties and overcomes its limited applicability to systems with relatively highly correlated inputs. The hybrid method’s use of operational matrices allows analyses of systems with low input correlations without suffering its restriction to small parameter uncertainties. The hybrid method is aimed to propagate uncertainties in fractional order systems with random parameters and random inputs with low correlation lengths. It is validated through several examples with different stochastic uncertainties. Comparison with Monte Carlo and gPC demonstrates the superior computational efficiency of the proposed method.  相似文献   

16.
We perform analysis for a finite elements method applied to the singular self-adjoint problem. This method uses continuous piecewise polynomial spaces for the trial and the test spaces. We fit the trial polynomial space by piecewise exponentials and we apply so exponentially fitted Galerkin method to singular self-adjoint problem by approximating driving terms by Lagrange piecewise polynomials, linear, quadratic and cubic. We measure the erroe in max norm. We show that method is optimal of the first order in the error estimate. We also give numerical results for the Galerkin approximation.  相似文献   

17.

We consider a family of variational time discretizations that are generalizations of discontinuous Galerkin (dG) and continuous Galerkin–Petrov (cGP) methods. The family is characterized by two parameters. One describes the polynomial ansatz order while the other one is associated with the global smoothness that is ensured by higher order collocation conditions at both ends of the subintervals. Applied to Dahlquist’s stability problem, the presented methods provide the same stability properties as dG or cGP methods. Provided that suitable quadrature rules of Hermite type are used to evaluate the integrals in the variational conditions, the variational time discretization methods are connected to special collocation methods. For this case, we present error estimates, numerical experiments, and a computationally cheap postprocessing that allows to increase both the accuracy and the global smoothness by one order.

  相似文献   

18.
A sparse grid stochastic collocation method combined with discontinuous Galerkin method is developed for solving convection dominated diffusion optimal control problem with random coefficients. By the optimal control theory, an optimality system is obtained for the problem, which consists of a state equation, a co-state equation and an inequality. Based on finite dimensional noise assumption of random field, the random coefficients are assumed to have finite term expansions depending on a finite number of mutually independent random variables in the probability space. An approximation scheme is established by using a discontinuous Galerkin method for the physical space and a sparse grid stochastic collocation method based on the Smolyak construction for the probability space, which leads to the solution of uncoupled deterministic problems. A priori error estimates are derived for the state, co-state and control variables. Numerical experiments are presented to illustrate the theoretical results.  相似文献   

19.
In recent years, there has been a growing interest in uncertainty propagation, and a wide variety of uncertainty propagation methods exist in literature. In this paper, an uncertainty propagation approach is developed by using high-dimensional model representation (HDMR) and dimension reduction (DR) method technique in the stochastic space to represent the model output as a finite hierarchical correlated function expansion in terms of the stochastic inputs starting from lower-order to higher-order component functions. To save the computational cost, a dimension-adaptive version of the additive decomposition is proposed to detect the important component functions to reduce the terms. The proposed method requires neither the calculation of partial derivatives of response, as in commonly used Taylor expansion/perturbation methods, nor the inversion of random matrices, as in the Neumann expansion method. Two numerical examples show the efficiency and accuracy of the proposed method.  相似文献   

20.
This article attempts to study the stochastic coupled thermo-elasticity of thick hollow cylinders subjected to thermal shock loading considering uncertainty in mechanical properties. The thermo-elastic governing equations based on Green–Naghdi theory (without energy dissipation) are stochastically solved using a hybrid numerical method (combined Galerkin finite element and Newmark finite difference methods). The mechanical properties are considered as random variables with Gaussian distribution, which are generated using Monte Carlo simulation method with various coefficients of variations (COVs). The effects of uncertainty in mechanical properties with various coefficients of variations on thermo-elastic wave propagation are studied in detail. Also, the maximum, mean and variance of temperature, displacement and stresses are illustrated across thickness of cylinder in various times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号