首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
We introduce an adaptive finite element method for computing electromagnetic guided waves in a closed, inhomogeneous, pillared three-dimensional waveguide at a given frequency based on the inverse iteration method. The problem is formulated as a generalized eigenvalue problems. By modifying the exact inverse iteration algorithm for the eigenvalue problem, we design a new adaptive inverse iteration finite element algorithm. Adaptive finite element methods based on a posteriori error estimate are known to be successful in resolving singularities of eigenfunctions which deteriorate the finite element convergence. We construct a posteriori error estimator for the electromagnetic guided waves problem. Numerical results are reported to illustrate the quasi-optimal performance of our adaptive inverse iteration finite element method.  相似文献   

2.
On Finite Element Methods for Inhomogeneous Dielectric Waveguides   总被引:1,自引:0,他引:1  
We investigate the problem of computing electromagnetic guided waves in a closed,inhomogeneous, pillared three-dimensional waveguide at a given frequency. The problem is formulated as a generalized eigenvalue problem. By modifying the sesquilinear form associated with the eigenvalue problem, we provide a new convergence analysis for the finite element approximations. Numerical results are reported to illustrate the performance of the method.  相似文献   

3.
The electromagnetic interior transmission problem is a boundary value problem, which is neither elliptic nor self-adjoint. The associated transmission eigenvalue problem has important applications in the inverse electromagnetic scattering theory for inhomogeneous media. In this paper, we show that, in general, there do not exist purely imaginary electromagnetic transmission eigenvalues. For constant index of refraction, we prove that it is uniquely determined by the smallest (real) transmission eigenvalue. Finally, we show that complex transmission eigenvalues must lie in a certain region in the complex plane. The result is verified by examples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The interior transmission eigenvalue problem for scalar acoustics is studied for a new class of refractive index. Existence of an infinite discrete set of transmission eigenvalues in the case that the acoustic properties of a domain D???? n are allowed to have a C 2-transition to the homogeneous background medium is established. It is shown that the transmission problem has a weak formulation on certain weighted Sobolev spaces for this class of refractive index. The weak formulation and the discreteness of the spectrum is justified by using the Hardy inequality to prove compact imbedding theorems. Existence of transmission eigenvalues is demonstrated by investigating a generalized eigenvalue problem associated with the weak formulation.  相似文献   

5.
We consider the interior transmission problem when the inhomogeneous medium has a cavity region. In this case we establish the Fredholm property for this problem and show that there does not exist a transmission eigenvalue under a new condition.  相似文献   

6.
We develop an interior-point polynomial-time algorithm for a generalized linear-fractional problem. The latter problem can be regarded as a nonpolyhedral extension of the usual linear-fractional programming; typical example (which is of interest for control theory) is the minimization of the generalized eigenvalue of a pair of symmetric matrices linearly depending on the decision variables.  相似文献   

7.
We propose a new implementation of the sign function based spectral divide-and-conquer method for the generalized non-symmetric eigenvalue problem. The basic idea is to use the generalized matrix sign function to split the spectrum and the corresponding deflating subspaces and to build a recursive scheme on top of this. The method focuses on an extensive usage of scalable level 3 BLAS operations in order to achieve a good performance on modern computer architectures which makes it computationally superior to current implementations of the classical QZ algorithm. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The sloshing problem is a linear eigenvalue problem for a partial differential operator that describes the small lateral oscillations of the free surface of an ideal fluid on a container subject to gravity. We consider two-dimensional problems on regions representing the cross-section of a cylindrical tank or canal. A conformal mapping transforms the sloshing problem on the given region to a weighted eigenvalue problem on a simple region such as a rectangle. The weighted problem can be treated very effectively by the powerful methods of intermediate problems. The strength and versatility of the method is illustrated with a variety of examples.  相似文献   

9.
The inverse-free preconditioned Krylov subspace method of Golub and Ye [G.H. Golub, Q. Ye, An inverse free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems, SIAM J. Sci. Comp. 24 (2002) 312-334] is an efficient algorithm for computing a few extreme eigenvalues of the symmetric generalized eigenvalue problem. In this paper, we first present an analysis of the preconditioning strategy based on incomplete factorizations. We then extend the method by developing a block generalization for computing multiple or severely clustered eigenvalues and develop a robust black-box implementation. Numerical examples are given to illustrate the analysis and the efficiency of the block algorithm.  相似文献   

10.
We study the stability of planar soliton solutions of equations describing the dynamics of an infinite inextensible unshearable rod under three-dimensional spatial perturbations. As a result of linearization about the soliton solution, we obtain an inhomogeneous scalar equation. This equation leads to a generalized eigenvalue problem. To establish the instability, we must verify the existence of an unstable eigenvalue (an eigenvalue with a positive real part). The corresponding proof of the instability is done using a local construction of the Evans function depending only on the spectral parameter. This function is analytic in the right half of the complex plane and has at least one zero on the positive real axis coinciding with an unstable eigenvalue of the generalized spectral problem.  相似文献   

11.
In this paper a Laguerre collocation type method based on usual Laguerre functions is designed in order to solve high order nonlinear boundary value problems as well as eigenvalue problems, on semi-infinite domain. The method is first applied to Falkner–Skan boundary value problem. The solution along with its first two derivatives are computed inside the boundary layer on a fine grid which cluster towards the fixed boundary. Then the method is used to solve a generalized eigenvalue problem which arise in the study of the stability of the Ekman boundary layer. The method provides reliable numerical approximations, is robust and easy implementable. It introduces the boundary condition at infinity without any truncation of the domain. A particular attention is payed to the treatment of boundary conditions at origin. The dependence of the set of solutions to Falkner–Skan problem on the parameter embedded in the system is reproduced correctly. For Ekman eigenvalue problem, the critical Reynolds number which assure the linear stability is computed and compared with existing results. The leftmost part of the spectrum is validated using QZ as well as some Jacobi–Davidson type methods.  相似文献   

12.
<正>1引言陀螺系统特征值问题是转子动力学中的基本问题,是一类特殊的二次特征值问题.假设M和K是n阶对称矩阵,C是n阶反对称矩阵,则二次特征值问题(λ~2M+λC+K)x=0(1)  相似文献   

13.
For generalized eigenvalue problems, we consider computing all eigenvalues located in a certain region and their corresponding eigenvectors. Recently, contour integral spectral projection methods have been proposed for solving such problems. In this study, from the analysis of the relationship between the contour integral spectral projection and the Krylov subspace, we conclude that the Rayleigh–Ritz-type of the contour integral spectral projection method is mathematically equivalent to the Arnoldi method with the projected vectors obtained from the contour integration. By this Arnoldi-based interpretation, we then propose a block Arnoldi-type contour integral spectral projection method for solving the eigenvalue problem.  相似文献   

14.
In this paper, we consider the numerical treatment of singular eigenvalue problems supplied with eigenparameter dependent boundary conditions using spectral methods. On the one hand, such boundary conditions hinder the construction of test and trial space functions which could incorporate them and thus providing well-conditioned Galerkin discretization matrices. On the other hand, they can generate surprising behavior of the eigenvectors hardly detected by analytic methods. These singular problems are often indirectly approximated by regular ones. We argue that spectral collocation as well as tau method offer remedies for the first two issues and provide direct and efficient treatment to such problems. On a finite domain, we consider the so-called Petterson-König’s rod eigenvalue problem and on the half line, we take into account the Charney’s baroclinic stability problem and the Fourier eigenvalue problem. One boundary condition in these problems depends on the eigenparameter and additionally, this also could depend on some physical parameters. The Chebyshev collocation based on both, square and rectangular differentiation and a Chebyshev tau method are used to discretize the first problem. All these schemes cast the problems into singular algebraic generalized eigenvalue ones which are solved by the QZ and/or Arnoldi algorithms as well as by some target oriented Jacobi-Davidson methods. Thus, the spurious eigenvalues are completely eliminated. The accuracy of square Chebyshev collocation is roughly estimated and its order of approximation with respect to the eigenvalue of interest is determined. For the problems defined on the half line, we make use of the Laguerre-Gauss-Radau collocation. The method proved to be reliable, accurate, and stable with respect to the order of approximation and the scaling parameter.  相似文献   

15.
In this paper, the computation of eigenvalue bounds for generalized interval eigenvalue problem is considered. Two algorithms based on the properties of continuous functions are developed for evaluating upper and lower eigenvalue bounds of structures with interval parameters. The method can provide the tightest bounds within a given precision. Numerical examples illustrate the effectiveness of the proposed method.  相似文献   

16.
We show that a multiple eigenvalue has different sensitivities under perturbations in a generalized Hermitian eigenvalue problem. Our result provides a solution to a question raised by Stewart and Sun. We also show how this difference of sensitivities plays a role in the eigenvalue forward error analysis after the Rayleigh-Ritz process, for which we present an approach that provides tight bounds.  相似文献   

17.
An important step in estimating the index of refraction of electromagnetic scattering problems is to compute the associated transmission eigenvalue problem. We develop in this paper efficient and accurate spectral methods for computing the transmission eigenvalues associated to the electromagnetic scattering problems. We present ample numerical results to show that our methods are very effective for computing transmission eigenvalues (particularly for computing the smallest eigenvalue), and together with the linear sampling method, provide an efficient way to estimate the index of refraction of a non-absorbing inhomogeneous medium.  相似文献   

18.
We study the solvability of nonlinear second order elliptic partial differential equations with nonlinear boundary conditions. We introduce the notion of “eigenvalue-lines” in the plane; these eigenvalue-lines join each Steklov eigenvalue to the first eigenvalue of the Neumann problem with homogeneous boundary condition. We prove existence results when the nonlinearities involved asymptotically stay, in some sense, below the first eigenvalue-lines or in a quadrilateral region (depicted in Fig. 1) enclosed by two consecutive eigenvalue-lines. As a special case we derive the so-called nonresonance results below the first Steklov eigenvalue as well as between two consecutive Steklov eigenvalues. The case in which the eigenvalue-lines join each Neumann eigenvalue to the first Steklov eigenvalue is also considered. Our method of proof is variational and relies mainly on minimax methods in critical point theory.  相似文献   

19.
After reviewing the harmonic Rayleigh–Ritz approach for the standard and generalized eigenvalue problem, we discuss several extraction processes for subspace methods for the polynomial eigenvalue problem. We generalize the harmonic and refined Rayleigh–Ritz approaches which lead to new approaches to extract promising approximate eigenpairs from a search space. We give theoretical as well as numerical results of the methods. In addition, we study the convergence of the Jacobi–Davidson method for polynomial eigenvalue problems with exact and inexact linear solves and discuss several algorithmic details. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
We prove the existence of transmission eigenvalues corresponding to the inverse scattering problem for isotropic and anisotropic media for both the scalar problem and Maxwell's equations. Considering a generalized abstract eigenvalue problem, we are able to extend the ideas of Päivärinta and Sylvester [Transmission eigenvalues, SIAM J. Math. Anal. 40, (2008) pp. 783–753] to prove the existence of transmission eigenvalues for a larger class of interior transmission problems. Our analysis includes both the case of a medium with positive contrast and of a medium with negative contrast provided that the contrasts are large enough.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号