首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Judicious bisection of hypergraphs asks for a balanced bipartition of the vertex set that optimizes several quantities simultaneously.In this paper,we prove that if G is a hypergraph with n vertices and m_i edges of size i for i=1,2,...,k,then G admits a bisection in which each vertex class spans at most(m_1)/2+1/4m_2+…+(1/(2~k)+m_k+o(m_1+…+m_k) edges,where G is dense enough or △(G)= o(n) but has no isolated vertex,which turns out to be a bisection version of a conjecture proposed by Bollobas and Scott.  相似文献   

2.
Let x?=?[0; a 1 , a 2 , …] be the regular continued fraction expansion of an irrational number x ∈ [0, 1]. For the derivative of the Minkowski function ?(x) we prove that ?′(x)?=?+, provided that \( \mathop {{\lim \sup }}\limits_{t \to \infty } \frac{{{a_1} + \cdots + {a_t}}}{t} < {\kappa_1} = \frac{{2\log {\lambda_1}}}{{\log 2}} = {1.388^{+} } \), and ?′(x)?=?0, provided that \( \mathop {{\lim \inf }}\limits_{t \to \infty } \frac{{{a_1} + \cdots + {a_t}}}{t} > {\kappa_2} = \frac{{4{L_5} - 5{L_4}}}{{{L_5} - {L_4}}} = {4.401^{+} } \), where \( {L_j} = \log \left( {\frac{{j + \sqrt {{{j^2} + 4}} }}{2}} \right) - j \cdot \frac{{\log 2}}{2} \). Constants κ1, κ2 are the best possible. It is also shown that ?′(x)?=?+ for all x with partial quotients bounded by 4.  相似文献   

3.
For the linear positive Korovkin operator \(f\left( x \right) \to {t_n}\left( {f;x} \right) = \frac{1}{\pi }\int_{ - \pi }^\pi {f\left( {x + t} \right)E\left( t \right)dt} \), where E(x) is the Egervary–Szász polynomial and the corresponding interpolation mean \({t_{n,N}}\left( {f;x} \right) = \frac{1}{N}\sum\limits_{k = - N}^{N - 1} {{E_n}\left( {x - \frac{{\pi k}}{N}} \right)f\left( {\frac{{\pi k}}{N}} \right)} \), the Jackson-type inequalities \(\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant \left( {1 + \pi } \right){\omega _f}\left( {\frac{1}{n}} \right),\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant 2{\omega _f}\left( {\frac{\pi }{{n + 1}}} \right)\), where ωf (x) denotes the modulus of continuity, are proved for N > n/2. For ωf (x) ≤ Mx, the inequality \(\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant \frac{{\pi M}}{{n + 1}}\). is established. As a consequence, an elementary derivation of an asymptotically sharp estimate of the Kolmogorov width of a compact set of functions satisfying the Lipschitz condition is obtained.  相似文献   

4.
Let L2 be the space of 2π-periodic square-summable functions and E(f, X)2 be the best approximation of f by the space X in L2. For n ∈ ? and BL2, let \({{\Bbb S}_{B,n}}\) be the space of functions s of the form \(s\left( x \right) = \sum\limits_{j = 0}^{2n - 1} {{\beta _j}B\left( {x - \frac{{j\pi }}{n}} \right)} \). This paper describes all spaces \({{\Bbb S}_{B,n}}\) that satisfy the exact inequality \(E{\left( {f,{S_{B,n}}} \right)_2} \leqslant \frac{1}{{^{{n^r}}}}\parallel {f^{\left( r \right)}}{\parallel _2}\). (2n–1)-dimensional subspaces fulfilling the same estimate are specified. Well-known inequalities are for approximation by trigonometric polynomials and splines obtained as special cases.  相似文献   

5.
The main purpose of this paper is to establish the Hormander-Mihlin type theorem for Fourier multipliers with optimal smoothness on k-parameter Hardy spaces for k≥ 3 using the multiparameter Littlewood-Paley theory. For the sake of convenience and simplicity, we only consider the case k = 3, and the method works for all the cases k≥ 3:■where x =(x_1,x_2,x_3)∈R~(n_1)×R~(n_2)×R~(n_3) and ξ =(ξ_1,ξ_2,ξ_3)∈R~(n_1)×R~(n_2)×R~(n_3). One of our main results is the following:Assume that m(ξ) is a function on R~(n_1+n_2+n_3) satisfying ■ with s_i n_i(1/p-1/2) for 1≤i≤3. Then T_m is bounded from H~p(R~(n_1)×R~(n_2)×R~(n_3) to H~p(R~(n_1)×R~(n_2)×R~(n_3)for all 0 p≤1 and ■ Moreover, the smoothness assumption on s_i for 1≤i≤3 is optimal. Here we have used the notations m_(j,k,l)(ξ)=m(2~jξ_1,2~kξ_2,2~lξ_3)Ψ(ξ_1)Ψ(ξ_2)Ψ(ξ_3) and Ψ(ξ_i) is a suitable cut-off function on R~(n_i) for1≤i≤3, and W~(s_1,s_2,s_3) is a three-parameter Sobolev space on R~(n_1)×R~(n_2)× R~(n_3).Because the Fefferman criterion breaks down in three parameters or more, we consider the L~p boundedness of the Littlewood-Paley square function of T_mf to establish its boundedness on the multi-parameter Hardy spaces.  相似文献   

6.
Following an idea of Lin, we prove that if A and B are two positive operators such that 0 mI ≤ A ≤m'I≤ M'I ≤ B ≤ MI, then Φ~2(A+B/2)≤K~2(h)/(1+(logM'/m'/g))~2Φ~2(A≠B) and Φ~2(A+B/2)≤K~2(h)/(1+(logM'/m'/g))~2(Φ(A)≠Φ(B))~2 where K(h)=(h+1)~2/4 and h = M/m and Φ is a positive unital linear map.  相似文献   

7.
For a positive integer m, let f(m) be the maximum value t such that any graph with m edges has a bipartite subgraph of size at least t, and let g(m) be the minimum value s such that for any graph G with m edges there exists a bipartition V (G)=V 1?V 2 such that G has at most s edges with both incident vertices in V i . Alon proved that the limsup of \(f\left( m \right) - \left( {m/2 + \sqrt {m/8} } \right)\) tends to infinity as m tends to infinity, establishing a conjecture of Erd?s. Bollobás and Scott proposed the following judicious version of Erd?s' conjecture: the limsup of \(m/4 + \left( {\sqrt {m/32} - g(m)} \right)\) tends to infinity as m tends to infinity. In this paper, we confirm this conjecture. Moreover, we extend this conjecture to k-partitions for all even integers k. On the other hand, we generalize Alon's result to multi-partitions, which should be useful for generalizing the above Bollobás-Scott conjecture to k-partitions for odd integers k.  相似文献   

8.
The complexity of realization of Boolean functions by circuits of functional elements in the basis consisting of all characteristic functions of antichains over a Boolean cube is studied. It is proved that the complexity of realization of an n-variable parity function is \(\left\lfloor {\frac{{n + 1}}{2}} \right\rfloor \) and the complexity of its negation equals the complexity of the n-variable majority function which is \(\left\lceil {\frac{{n + 1}}{2}} \right\rceil \).  相似文献   

9.
Let \(N_{\mathbb{F}} \)(n,k,r) denote the maximum number of columns in an n-row matrix with entries in a finite field \(\mathbb{F}\) in which each column has at most r nonzero entries and every k columns are linearly independent over \(\mathbb{F}\). We obtain near-optimal upper bounds for \(N_{\mathbb{F}} \)(n,k,r) in the case k > r. Namely, we show that \(N_\mathbb{F} (n,k,r) \ll n^{\frac{r}{2} + \frac{{cr}}{k}} \) where \(c \approx \frac{4}{3}\) for large k. Our method is based on a novel reduction of the problem to the extremal problem for cycles in graphs, and yields a fast algorithm for finding short linear dependencies. We present additional applications of this method to a problem on hypergraphs and a problem in combinatorial number theory.  相似文献   

10.
Let (F n ) n≥0 be the Fibonacci sequence. For 1 ≤ km, the Fibonomial coefficient is defined as
$${\left[ {\begin{array}{*{20}{c}} m \\ k \end{array}} \right]_F} = \frac{{{F_{m - k + 1}} \cdots {F_{m - 1}}{F_m}}}{{{F_1} \cdots {F_k}}}$$
. In 2013, Marques, Sellers and Trojovský proved that if p is a prime number such that p ≡ ±2 (mod 5), then \(p{\left| {\left[ {\begin{array}{*{20}{c}} {{p^{a + 1}}} \\ {{p^a}} \end{array}} \right]} \right._F}\) for all integers a ≥ 1. In 2015, Marques and Trojovský worked on the p-adic order of \({\left[ {\begin{array}{*{20}{c}} {{p^{a + 1}}} \\ {{p^a}} \end{array}} \right]_F}\) for all a ≥ 1 when p ≠ 5. In this paper, we shall provide the exact p-adic order of \({\left[ {\begin{array}{*{20}{c}} {{p^{a + 1}}} \\ {{p^a}} \end{array}} \right]_F}\) for all integers a, b ≥ 1 and for all prime number p.
  相似文献   

11.
Let (Fn)n≥0 be the Fibonacci sequence. For 1 ≤ km, the Fibonomial coefficient is defined as
$${\left[ {\begin{array}{*{20}{c}} n \\ k \end{array}} \right]_F} = \frac{{{F_{n - k + 1}} \cdots {F_{n - 1}}{F_n}}}{{{F_1} \cdots {F_k}}}$$
. In 2013, Marques, Sellers and Trojovský proved that if p is a prime number such that p ≡ ±1 (mod 5), then p?\({\left[ {\begin{array}{*{20}{c}} {{p^{a + 1}}} \\ {{p^a}} \end{array}} \right]_F}\) for all integers a ≥ 1. In 2010, in particular, Kilic generalized the Fibonomial coefficients for
$${\left[ {\begin{array}{*{20}{c}} n \\ k \end{array}} \right]_{F,m}} = \frac{{{F_{\left( {n - k + 1} \right)m}} \cdots {F_{\left( {n - 1} \right)m}}{F_{nm}}}}{{{F_m} \cdots {F_{km}}}}$$
. In this note, we generalize Marques, Sellers and Trojovský result to prove, in particular, that if p ≡ ±1 (mod 5), then \({\left[ {\begin{array}{*{20}{c}} {{p^{a + 1}}} \\ {{p^a}} \end{array}} \right]_{F,m}} \equiv 1\) (mod p), for all a ≥ 0 and m ≥ 1.
  相似文献   

12.
Let G be a k(k ≤ 2)-edge connected simple graph with minimal degree ≥ 3 and girth \(g,r = \left\lfloor {\frac{{g - 1}}{2}} \right\rfloor \). For any edge uvE(G), if
$${d_G}\left( u \right) + {d_G}\left( v \right) > \frac{{2v\left( G \right) - 2\left( {k + 1} \right)\left( {g - 2r} \right)}}{{\left( {k + 1} \right)\left( {{2^r} - 1} \right)\left( {g - 2r} \right)}} + 2\left( {g - 2r - 1} \right),$$
then G is up-embeddable. Furthermore, similar results for 3-edge connected simple graphs are also obtained.
  相似文献   

13.
We investigate the nonlinear Schrödinger equation iu t u+|u| p?1 u = 0with 1+ 4/N < p < 1+ 4/N?2 (when N = 1, 2, 1 + 4/N < p < ∞) in energy space H 1 and study the divergent property of infinite-variance and nonradial solutions. If \(M{\left( u \right)^{\frac{{1 - {s_C}}}{{{s_C}}}}}E\left( u \right) \prec M{\left( Q \right)^{\frac{{1 - {s_C}}}{{{s_C}}}}}E\left( Q \right)\) and \(\left\| {{u_0}} \right\|_2^{\frac{{1 - {s_c}}}{{{s_c}}}}\left\| {\nabla {u_0}} \right\|_2^{\frac{{1 - {s_c}}}{{{s_c}}}}{\left\| {\nabla Q} \right\|_2}\), then either u(t) blows up in finite forward time or u(t) exists globally for positive time and there exists a time sequence t n → +∞ such that \({\left\| {\nabla u\left( {{t_n}} \right)} \right\|_2} \to + \infty \). Here Q is the ground state solution of ?(1?s c )QQ+Q p?1 Q = 0. A similar result holds for negative time. This extend the result of the 3D cubic Schrödinger equation obtained by Holmer to the general mass-supercritical and energy-subcritical case.  相似文献   

14.
For two odd integers m and s with 1 ≤ s < m and gcd(m ; s ) = 1, let h satisfy h (2s ? 1) ≡ 1 (mod 2m + 1) and d = (h + 1)(2m ? 1) + 1. The cross correlation function between a binary m-sequence of period 22m ? 1 and its d-decimation sequence is proved to take four values, and the correlation distribution is completely determined. Let n be an even integer and k be an integer with \(1 \leqslant k \leqslant \frac{n}{2}\). For an odd prime p and a p-ary m-sequence {s(t)} of period pn ? 1, define u(t) = \(\sum \begin{array}{*{20}{c}}{\frac{{{p^k} - 1}}{2}} \\ {i = 0} \end{array}\) s(dit), where di = \(i{p^{\frac{n}{2}}} + {p^k} - i\) ? i and i = 0,1,..., \(\frac{{{p^k} - 1}}{2}\). It is proved that the cross correlation function between {u(t)} and {s(t)} is three-valued or four-valued depending on whether k is equal to \(\frac{n}{2}\) or not, and the distribution is also determined.  相似文献   

15.
We prove that any ? positive definite d × d matrices, M1,...,M?, of full rank, can be simultaneously spectrally balanced in the following sense: for any k < d such that ? ≤ \(\ell \leqslant \left\lfloor {\frac{{d - 1}}{{k - 1}}} \right\rfloor \), there exists a matrix A satisfying \(\frac{{{\lambda _1}\left( {{A^T}{M_i}A} \right)}}{{Tr\left( {{A^T}{M_i}A} \right)}} < \frac{1}{k}\) 1/k for all i, where λ1(M) denotes the largest eigenvalue of a matrix M. This answers a question posed by Peres, Popov and Sousi ([PPS13]) and completes the picture described in that paper regarding sufficient conditions for transience of self-interacting random walks. Furthermore, in some cases we give quantitative bounds on the transience of such walks.  相似文献   

16.
Suppose that m ≥ 2, numbers p1, …, p m ∈ (1, +∞] satisfy the inequality \(\frac{1}{{{p_1}}} + ... + \frac{1}{{{p_m}}} < 1\), and functions γ1\({L^{{p_1}}}\)(?1), …, γ m \({L^{{p_m}}}\)(?1) are given. It is proved that if the set of “resonance points” of each of these functions is nonempty and the so-called “resonance condition” holds, then there are arbitrarily small (in norm) perturbations Δγk\({L^{{p_k}}}\)(?1) under which the resonance set of each function γk + Δγk coincides with that of γk for 1 ≤ km, but \({\left\| {\int\limits_0^t {\prod\limits_{k = 0}^m {\left[ {{\gamma _k}\left( \tau \right) + \Delta {\gamma _k}\left( \tau \right)} \right]d\tau } } } \right\|_{{L^\infty }\left( {{\mathbb{R}^1}} \right)}} = \infty \). The notion of a resonance point and the resonance condition for functions in the spaces L p (?1), p ∈ (1, +∞], were introduced by the author in his previous papers.  相似文献   

17.
Let m ≥ 2, the numbers p 1,…, p m ∈ (1, +∞] satisfy the inequality \(\frac{1}{{{p_1}}} + ...\frac{1}{{{p_m}}} < 1\), and γ1 ∈ L p1(?1), …, γ m \({L^{{p_m}}}\)(?1). We prove that, if the set of “resonance” points of each of these functions is nonempty and the “nonresonance” condition holds (both concepts have been introduced by the author for functions of spaces L p (?1), p ∈ (1, +∞]), we have the inequality \(\mathop {\sup }\limits_{a,b \in {R^1}} \left| {\int\limits_a^b {\prod\limits_{k = 1}^m {\left[ {{\gamma _k}\left( \tau \right) + \Delta {\gamma _k}\left( \tau \right)} \right]} d\tau } } \right| \leqslant C{\prod\limits_{k = 1}^m {\left\| {{\gamma _k} + \Delta {\gamma _k}} \right\|} _{L_{{a_k}}^{{p_k}}}}\left( {{\mathbb{R}^1}} \right)\), where the constant C > 0 is independent of functions \(\Delta {\gamma _k} \in L_{{a_k}}^{{p_k}}\left( {{\mathbb{R}^1}} \right)\) and \(L_{{a_k}}^{{p_k}}\left( {{\mathbb{R}^1}} \right) \subset {L^{{p_k}}}\left( {{\mathbb{R}^1}} \right)\), 1 ≤ km are some specially constructed normed spaces. In addition, we give a boundedness condition for the integral of the product of functions over a subset of ?1.  相似文献   

18.
The Schur-Szegö composition of two polynomials \(f\left( z \right) = \sum\nolimits_{j = 0}^n {{A_j}{z^j}} \) and \(g\left( z \right) = \sum\nolimits_{j = 0}^n {{B_j}{z^j}} \), both of degree n, is defined by \(f * g\left( z \right) = \sum\nolimits_{j = 0}^n {{A_j}{B_j}{{\left( {\begin{array}{*{20}{c}}n \\ j \end{array}} \right)}^{ - 1}}{z^j}} \). In this paper, we estimate the minimum and the maximum of the modulus of f * g(z) on z = 1 and thereby obtain results analogues to Bernstein type inequalities for polynomials.  相似文献   

19.
20.
Let f be a fixed holomorphic Hecke eigen cusp form of weight k for \( SL\left( {2,{\mathbb Z}} \right) \), and let \( {\mathcal U} = \left\{ {{u_j}:j \geqslant 1} \right\} \) be an orthonormal basis of Hecke–Maass cusp forms for \( SL\left( {2,{\mathbb Z}} \right) \). We prove an asymptotic formula for the twisted first moment of the Rankin–Selberg L-functions \( L\left( {s,f \otimes {u_j}} \right) \) at \( s = \frac{1}{2} \) as u j runs over \( {\mathcal U} \). It follows that f is uniquely determined by the central values of the family of Rankin–Selberg L-functions \( \left\{ {L\left( {s,f \otimes {u_j}} \right):{u_j} \in {\mathcal U}} \right\} \).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号