首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we derive some pointwise error estimates for the local discontinuous Galerkin (LDG) method for solving second-order elliptic problems in (). Our results show that the pointwise errors of both the vector and scalar approximations of the LDG method are of the same order as those obtained in the norm except for a logarithmic factor when the piecewise linear functions are used in the finite element spaces. Moreover, due to the weighted norms in the bounds, these pointwise error estimates indicate that when at least piecewise quadratic polynomials are used in the finite element spaces, the errors at any point depend very weakly on the true solution and its derivatives in the regions far away from . These localized error estimates are similar to those obtained for the standard conforming finite element method.

  相似文献   


2.
A family of discontinuous Galerkin finite element methods is formulated and analyzed for Stokes and Navier-Stokes problems. An inf-sup condition is established as well as optimal energy estimates for the velocity and estimates for the pressure. In addition, it is shown that the method can treat a finite number of nonoverlapping domains with nonmatching grids at interfaces.

  相似文献   


3.
We introduce and analyze the local discontinuous Galerkin method for the Oseen equations of incompressible fluid flow. For a class of shape-regular meshes with hanging nodes, we derive optimal a priori estimates for the errors in the velocity and the pressure in - and negative-order norms. Numerical experiments are presented which verify these theoretical results and show that the method performs well for a wide range of Reynolds numbers.

  相似文献   


4.
The Upwind Source at Interface (U.S.I.) method for hyperbolic conservation laws with source term introduced by Perthame and Simeoni is essentially first order accurate. Under appropriate hypotheses of consistency on the finite volume discretization of the source term, we prove -error estimates, , in the case of a uniform spatial mesh, for which an optimal result can be obtained. We thus conclude that the same convergence rates hold as for the corresponding homogeneous problem. To improve the numerical accuracy, we develop two different approaches of dealing with the source term and we discuss the question of deriving second order error estimates. Numerical evidence shows that those techniques produce high resolution schemes compatible with the U.S.I. method.

  相似文献   


5.
We prove a priori estimates and optimal error estimates for linear finite element approximations of elliptic systems in divergence form with continuous coefficients in Campanato spaces. The proofs rely on discrete analogues of the Campanato inequalities for the solution of the system, which locally measure the decay of the energy. As an application of our results we derive -estimates and give a new proof of the well-known -results of Rannacher and Scott.

  相似文献   


6.
This part contains new pointwise error estimates for the finite element method for second order elliptic boundary value problems on smooth bounded domains in . In a sense to be discussed below these sharpen known quasi-optimal and estimates for the error on irregular quasi-uniform meshes in that they indicate a more local dependence of the error at a point on the derivatives of the solution . We note that in general the higher order finite element spaces exhibit more local behavior than lower order spaces. As a consequence of these estimates new types of error expansions will be derived which are in the form of inequalities. These expansion inequalities are valid for large classes of finite elements defined on irregular grids in and have applications to superconvergence and extrapolation and a posteriori estimates. Part II of this series will contain local estimates applicable to non-smooth problems.

  相似文献   


7.
This paper provides an error analysis for the Crank-Nicolson extrapolation scheme of time discretization applied to the spatially discrete stabilized finite element approximation of the two-dimensional time-dependent Navier-Stokes problem, where the finite element space pair for the approximation of the velocity and the pressure is constructed by the low-order finite element: the quadrilateral element or the triangle element with mesh size . Error estimates of the numerical solution to the exact solution with are derived.

  相似文献   


8.
Significant wave height, , is a measure of the variability of the ocean surface and is defined to be four times the standard deviation of the height of the ocean surface. In this paper, we present a methodology for modelling estimates of over space and time, using data obtained from satellite measurements. These estimates can be thought of as a random surface in space which develops over time. For each fixed time and over some limited region in space, the field consisting of the estimates may be considered stationary. Furthermore, it is reasonable to assume that the (natural) logarithms of the estimates are normally distributed. Under these assumptions and for each fixed time, the marginal distribution over space of the random field of the logarithms of the estimates is fitted by estimating its mean and covariance function, where the form of the covariance function is chosen to allow for correlation patterns at different spatial scales in the data. Both the mean and the covariance function of this model are allowed to be time dependent. A new methodology is developed for estimating the parameters of the chosen covariance structure. The proposed model is validated along the TOPEX-Poseidon satellite tracks by computing distributions of different quantities for the fitted model and comparing these to empirical estimates. Finally, the fitted model is used to compute the distribution of the global maximum over a certain region in the North Atlantic and to reconstruct the field.The research of Anastassia Baxevani is partially supported by the Gothenburg Stochastic Center.  相似文献   

9.
We show convergence in the natural and norm for a semidiscretization with linear finite elements of a linear parabolic partial differential equations on evolving surfaces. To prove this, we show error estimates for a Ritz map, error estimates for the material derivative of a Ritz map and a weak discrete maximum principle.  相似文献   

10.
We give estimates on the bottom of the essential spectrum of Schrödinger operators in .

  相似文献   


11.
A finite element method is considered for dealing with nearly incompressible material. In the case of large deformations the nonlinear character of the volumetric contribution has to be taken into account. The proposed mixed method avoids volumetric locking also in this case and is robust for (with being the well-known Lamé constant). Error estimates for the -norm are crucial in the control of the nonlinear terms.

  相似文献   


12.
We present a range of mesh-dependent inequalities for piecewise constant and continuous piecewise linear finite element functions defined on locally refined shape-regular (but possibly non-quasi-uniform) meshes. These inequalities involve norms of the form for positive and negative and , where is a function which reflects the local mesh diameter in an appropriate way. The only global parameter involved is , the total number of degrees of freedom in the finite element space, and we avoid estimates involving either the global maximum or minimum mesh diameter. Our inequalities include new variants of inverse inequalities as well as trace and extension theorems. They can be used in several areas of finite element analysis to extend results--previously known only for quasi-uniform meshes--to the locally refined case. Here we describe applications to (i) the theory of nonlinear approximation and (ii) the stability of the mortar element method for locally refined meshes.

  相似文献   


13.
Summary In this article we study a new mixed method for the Stokes and Navier-Stokes equations. The method uses two meshes, one very fine for and a coarser one for . Error estimates show that boundary layers do not require to refine the mesh for the stream function as much as for the vorticity when the Reynolds number is large. We prove estimates and study implementation problems.  相似文献   

14.
An elliptic system of singularly perturbed linear reaction-diffusion equations, coupled through their zero-order terms, is considered on the unit square. This system does not in general satisfy a maximum principle. It is solved numerically using a standard difference scheme on tensor-product Bakhvalov and Shishkin meshes. An error analysis for these numerical methods shows that one obtains nodal convergence on the Bakhvalov mesh and convergence on the Shishkin mesh, where mesh intervals are used in each coordinate direction and the convergence is uniform in the singular perturbation parameter. The analysis is much simpler than previous analyses of similar problems, even in the case of a single reaction-diffusion equation, as it does not require the construction of an elaborate decomposition of the solution. Numerical results are presented to confirm our theoretical error estimates.

  相似文献   


15.
We propose and analyze a fully discrete finite element scheme for the phase field model describing the solidification process in materials science. The primary goal of this paper is to establish some useful a priori error estimates for the proposed numerical method, in particular, by focusing on the dependence of the error bounds on the parameter , known as the measure of the interface thickness. Optimal order error bounds are shown for the fully discrete scheme under some reasonable constraints on the mesh size and the time step size . In particular, it is shown that all error bounds depend on only in some lower polynomial order for small . The cruxes of the analysis are to establish stability estimates for the discrete solutions, to use a spectrum estimate result of Chen, and to establish a discrete counterpart of it for a linearized phase field operator to handle the nonlinear effect. Finally, as a nontrivial byproduct, the error estimates are used to establish convergence of the solution of the fully discrete scheme to solutions of the sharp interface limits of the phase field model under different scaling in its coefficients. The sharp interface limits include the classical Stefan problem, the generalized Stefan problems with surface tension and surface kinetics, the motion by mean curvature flow, and the Hele-Shaw model.

  相似文献   


16.
In this paper, we consider a linearly elastic shell, i.e. a three-dimensional linearly elastic body with a small thickness denoted by 2ε, which is clamped along its part of the lateral boundary and subjected to the regular loads. In the linear case, one can use the two-dimensional models of Ciarlet or Koiter to calculate the displacement for the shell. Some error estimates between the approximate solution of these models and the three-dimensional displacement vector field of a flexural or membrane shell have been obtained. Here we give a new model for a linear and nonlinear shell, prove that there exists a unique solution U of the two-dimensional variational problem and construct a three-dimensional approximate solutions UKT(x,ξ) in terms of U: We also provide the error estimates between our model and the three-dimensional displacement vector field :‖u-UKT‖1,Ω≤C∈r,r=3/2, an elliptic membrane, r = 1/2, a general membrane, where C is a constant dependent only upon the data‖u‖3,Ω,‖UKT‖3,Ω,θ.  相似文献   

17.
A fast sweeping method for Eikonal equations   总被引:14,自引:0,他引:14  
In this paper a fast sweeping method for computing the numerical solution of Eikonal equations on a rectangular grid is presented. The method is an iterative method which uses upwind difference for discretization and uses Gauss-Seidel iterations with alternating sweeping ordering to solve the discretized system. The crucial idea is that each sweeping ordering follows a family of characteristics of the corresponding Eikonal equation in a certain direction simultaneously. The method has an optimal complexity of for grid points and is extremely simple to implement in any number of dimensions. Monotonicity and stability properties of the fast sweeping algorithm are proven. Convergence and error estimates of the algorithm for computing the distance function is studied in detail. It is shown that Gauss-Seidel iterations is enough for the distance function in dimensions. An estimation of the number of iterations for general Eikonal equations is also studied. Numerical examples are used to verify the analysis.

  相似文献   


18.
A multi-level spectral Galerkin method for the two-dimensional non-stationary Navier-Stokes equations is presented. The method proposed here is a multiscale method in which the fully nonlinear Navier-Stokes equations are solved only on a low-dimensional space subsequent approximations are generated on a succession of higher-dimensional spaces j=2, . . . ,J, by solving a linearized Navier-Stokes problem around the solution on the previous level. Error estimates depending on the kinematic viscosity 0<ν<1 are also presented for the J-level spectral Galerkin method. The optimal accuracy is achieved when We demonstrate theoretically that the J-level spectral Galerkin method is much more efficient than the standard one-level spectral Galerkin method on the highest-dimensional space . The work of this author was supported in part by the NSF of China 10371095, City University of Hong Kong Research Project 7001093 Hong Kong and the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CityU 1084/02P)  相似文献   

19.
We consider the fictitious domain method with L2‐penalty for the Stokes problem with the Dirichlet boundary condition. First, we investigate the error estimates for the penalty method at the continuous level. We obtain the convergence of order in H1‐norm for the velocity and in L2‐norm for the pressure, where is the penalty parameter. The L2‐norm error estimate for the velocity is upgraded to . Moreover, we derive the a priori estimates depending on for the solution of the penalty problem. Next, we apply the finite element approximation to the penalty problem using the P1/P1 element with stabilization. For the discrete penalty problem, we prove the error estimate in H1‐norm for the velocity and in L2‐norm for the pressure, where h denotes the discretization parameter. For the velocity in L2‐norm, the convergence rate is improved to . The theoretical results are verified by the numerical experiments.  相似文献   

20.

We study the convergence properties of the -version of the local discontinuous Galerkin finite element method for convection-diffusion problems; we consider a model problem in a one-dimensional space domain. We allow arbitrary meshes and polynomial degree distributions and obtain upper bounds for the energy norm of the error which are explicit in the mesh-width , in the polynomial degree , and in the regularity of the exact solution. We identify a special numerical flux for which the estimates are optimal in both and . The theoretical results are confirmed in a series of numerical examples.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号