首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
《Quaestiones Mathematicae》2013,36(4):383-398
Abstract

A set B of vertices of a graph G = (V,E) is a k-maximal independent set (kMIS) if B is independent but for all ?-subsets X of B, where ? ? k—1, and all (? + 1)-subsets Y of V—B, the set (B—X) u Y is dependent. A set S of vertices of C is a k-maximal clique (kMc) of G iff S is a kMIS of [Gbar]. Let βk, (G) (wk(G) respectively) denote the smallest cardinality of a kMIS (kMC) of G—obviously βk(G) = wk([Gbar]). For the sequence m1 ? m2 ?…? mn = r of positive integers, necessary and sufficient conditions are found for a graph G to exist such that wk(G) = mk for k = 1,2,…,n and w(G) = r (equivalently, βk(G) = mk for k = 1,2,…,n and β(G) = r). Define sk(?,m) to be the largest integer such that for every graph G with at most sk(?,m) vertices, βk(G) ? ? or wk(G) ? m. Exact values for sk(?,m) if k ≥ 2 and upper and lower bounds for s1(?,m) are de termined.  相似文献   

2.
Zoltán Füredi 《Order》1994,11(1):15-28
LetB n(s, t) denote the partially ordered set consisting of alls-subsets andt-subsets of ann-element underlying set where these sets are ordered by inclusion. Answering a question of Trotter we prove that dim(B n(k, n–k))=n–2 for 3k<(1/7)n 1/3. The proof uses extremal hypergraph theory.  相似文献   

3.
Letf(n) denote the minimal number of edges of a 3-uniform hypergraphG=(V, E) onn vertices such that for every quadrupleYV there existsYeE. Turán conjectured thatf(3k)=k(k−1)(2k−1). We prove that if Turán’s conjecture is correct then there exist at least 2 k−2 non-isomorphic extremal hypergraphs on 3k vertices.  相似文献   

4.
M. Stiebitz 《Combinatorica》1987,7(3):303-312
Some problems and results on the distribution of subgraphs in colour-critical graphs are discussed. In section 3 arbitrarily largek-critical graphs withn vertices are constructed such that, in order to reduce the chromatic number tok−2, at leastc k n 2 edges must be removed. In section 4 it is proved that a 4-critical graph withn vertices contains at mostn triangles. Further it is proved that ak-critical graph which is not a complete graph contains a (k−1)-critical graph which is not a complete graph.  相似文献   

5.
A set S of vertices in a graph G is a packing if the vertices in S are pairwise at distance at least 3 apart in G. The packing number of G, denoted by ρ(G), is the maximum cardinality of a packing in G. Favaron [Discrete Math. 158 (1996), 287–293] showed that if G is a connected cubic graph of order n different from the Petersen graph, then ρ(G) ≥ n/8. In this paper, we generalize Favaron’s result. We show that for k ≥ 3, if G is a connected k-regular graph of order n that is not a diameter-2 Moore graph, then ρ(G) ≥ n/(k2 ? 1).  相似文献   

6.
A k-uniform hypergraph is hamiltonian if for some cyclic ordering of its vertex set, every k consecutive vertices form an edge. In 1952 Dirac proved that if the minimum degree in an n-vertex graph is at least n/2 then the graph is hamiltonian. We prove an approximate version of an analogous result for uniform hypergraphs: For every K ≥ 3 and γ > 0, and for all n large enough, a sufficient condition for an n-vertex k-uniform hypergraph to be hamiltonian is that each (k − 1)-element set of vertices is contained in at least (1/2 + γ)n edges. Research supported by NSF grant DMS-0300529. Research supported by KBN grant 2P03A 015 23 and N201036 32/2546. Part of research performed at Emory University, Atlanta. Research supported by NSF grant DMS-0100784.  相似文献   

7.
The aim of this paper is to show that the minimum Hadwiger number of graphs with average degreek isO(k/√logk). Specially, it follows that Hadwiger’s conjecture is true for almost all graphs withn vertices, furthermore ifk is large enough then for almost all graphs withn vertices andnk edges.  相似文献   

8.
Given a graph G with n vertices, we call ck(G) the minimum number of elementary cycles of length at most k necessary to cover the vertices of G. We bound ck(G) from the minimum degree and the order of the graph.  相似文献   

9.
Let T be a fixed tournament on k vertices. Let D(n,T ) denote the maximum number of orientations of an n-vertex graph that have no copy of T. We prove that for all sufficiently (very) large n, where tk−1(n) is the maximum possible number of edges of a graphon n vertices with no Kk, (determined by Turán’s Theorem). The proof is based on a directed version of Szemerédi’s regularity lemma together with some additional ideas and tools from Extremal Graph Theory, and provides an example of a precise result proved by applying this lemma. For the two possible tournaments with three vertices we obtain separate proofs that avoid the use of the regularity lemma and therefore show that in these cases already holds for (relatively) small values of n. * Research supported in part by a USA Israeli BSF grant, by a grant from the Israel Science Foundation and by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University.  相似文献   

10.
Given a function f : ℕ→ℝ, call an n-vertex graph f-connected if separating off k vertices requires the deletion of at least f(k) vertices whenever k≤(nf(k))/2. This is a common generalization of vertex connectivity (when f is constant) and expansion (when f is linear). We show that an f-connected graph contains a cycle of length linear in n if f is any linear function, contains a 1-factor and a 2-factor if f(k)≥2k+1, and contains a Hamilton cycle if f(k)≥2(k+1)2. We conjecture that linear growth of f suffices to imply hamiltonicity.  相似文献   

11.
Lovász, Saks, and Trotter showed that there exists an on-line algorithm which will color any on-linek-colorable graph onn vertices withO(nlog(2k–3) n/log(2k–4) n) colors. Vishwanathan showed that at least (log k–1 n/k k ) colors are needed. While these remain the best known bounds, they give a distressingly weak approximation of the number of colors required. In this article we study the case of perfect graphs. We prove that there exists an on-line algorithm which will color any on-linek-colorable perfect graph onn vertices withn 10k/loglogn colors and that Vishwanathan's techniques can be slightly modified to show that his lower bound also holds for perfect graphs. This suggests that Vishwanathan's lower bound is far from tight in the general case.Research partially supported by Office of Naval Research grant N00014-90-J-1206.  相似文献   

12.
Peter Frankl 《Combinatorica》1984,4(2-3):141-148
LetX be a finite set ofn elements and ℓ a family ofk-subsets ofX. Suppose that for a given setL of non-negative integers all the pairwise intersections of members of ℓ have cardinality belonging toL. Letm(n, k, L) denote the maximum possible cardinality of ℓ. This function was investigated by many authors, but to determine its exact value or even its correct order of magnitude appears to be hopeless. In this paper we investigate the case |L|=3. We give necessary and sufficient conditions form(n, k, L)=O(n) andm(n, k, L)≧O(n 2), and show that in some casesm(n, k, L)=O(n 3/2), which is quite surprising.  相似文献   

13.
It is an interesting problem that how much connectivity ensures the existence ofn disjoint paths joining givenn pairs of vertices, but to get a sharp bound seems to be very difficult. In this paper, we study how muchgeodetic connectivity ensures the existence ofn disjointgeodesics joining givenn pairs of vertices, where a graph is calledk-geodetically connected if the removal of anyk−1 vertices does not change the distance between any remaining vertices.  相似文献   

14.
Let G be a k-connected simple graph with order n. The k-diameter, combining connectivity with diameter, of G is the minimum integer d k (G) for which between any two vertices in G there are at least k internally vertex-disjoint paths of length at most d k (G). For a fixed positive integer d, some conditions to insure d k (G)⩽d are given in this paper. In particular, if d⩾3 and the sum of degrees of any s (s=2 or 3) nonadjacent vertices is at least n+(s−1)k+1−d, then d k (G)⩽d. Furthermore, these conditions are sharp and the upper bound d of k-diameter is best possible. Supported by NNSF of China (19971086).  相似文献   

15.
A convex labelling of a tree is an assignment of distinct non-negative integer labels to vertices such that wheneverx, y andz are the labels of vertices on a path of length 2 theny≦(x+z)/2. In addition if the tree is rooted, a convex labelling must assign 0 to the root. The convex label number of a treeT is the smallest integerm such thatT has a convex labelling with no label greater thanm. We prove that every rooted tree (and hence every tree) withn vertices has convex label number less than 4n. We also exhibitn-vertex trees with convex label number 4n/3+o(n), andn-vertex rooted trees with convex label number 2n +o(n). The research by M. B. and A. W. was partly supported by NSF grant MCS—8311422.  相似文献   

16.
It is proved that for every positive integer k, every n-connected graph G of sufficiently large order contains a set W of k vertices such that GW is (n-2)-connected. It is shown that this does not remain true if we add the condition that G(W) is connected.  相似文献   

17.
Letn, k, t be integers,n>k>t≧0, and letm(n, k, t) denote the maximum number of sets, in a family ofk-subsets of ann-set, no two of which intersect in exactlyt elements. The problem of determiningm(n, k, t) was raised by Erdős in 1975. In the present paper we prove that ifk≦2t+1 andk−t is a prime, thenm(n, k, t)≦( t n )( k 2k-t-1 )/( t 2k-t-1 ). Moreover, equality holds if and only if an (n, 2k−t−1,t)-Steiner system exists. The proof uses a linear algebraic approach.  相似文献   

18.
L. Pyber 《Combinatorica》1985,5(4):347-349
Every graph onn vertices, with at leastc k n logn edges contains ak-regular subgraph. This answers a question of Erdős and Sauer.  相似文献   

19.
Conditions are found under which the expected number of automorphisms of a large random labelled graph with a given degree sequence is close to 1. These conditions involve the probability that such a graph has a given subgraph. One implication is that the probability that a random unlabelledk-regular simple graph onn vertices has only the trivial group of automorphisms is asymptotic to 1 asn → ∞ with 3≦k=O(n 1/2−c). In combination with previously known results, this produces an asymptotic formula for the number of unlabelledk-regular simple graphs onn vertices, as well as various asymptotic results on the probable connectivity and girth of such graphs. Corresponding results for graphs with more arbitrary degree sequences are obtained. The main results apply equally well to graphs in which multiple edges and loops are permitted, and also to bicoloured graphs. Research of the second author supported by U. S. National Science Foundation Grant MCS-8101555, and by the Australian Department of Science and Technology under the Queen Elizabeth II Fellowships Scheme. Current address: Mathematics Department, University of Auckland, Auckland, New Zealand.  相似文献   

20.
It was proved ([5], [6]) that ifG is ann-vertex-connected graph then for any vertex sequencev 1, ...,v n V(G) and for any sequence of positive integersk 1, ...,k n such thatk 1+...+k n =|V(G)|, there exists ann-partition ofV(G) such that this partition separates the verticesv 1, ...,v(n), and the class of the partition containingv i induces a connected subgraph consisting ofk i vertices, fori=1, 2, ...,n. Now fix the integersk 1, ...,k n . In this paper we study what can we say about the vertex-connectivity ofG if there exists such a partition ofV(G) for any sequence of verticesv 1, ...,v n V(G). We find some interesting cases when the existence of such partitions implies then-vertex-connectivity ofG, in the other cases we give sharp lower bounds for the vertex-connectivity ofG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号