首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Пусть Tn(f)={L1(f), ..., Ln(f)} — набор линейных функционал ов, заданных на простран стве \(C_{(r - 1)} (\parallel f\parallel _{C_{(r - 1)} } = \mathop {\max }\limits_{0 \leqq i \leqq r - 1} \parallel f^{(i)} \parallel _C );A_{n,r}\) — множество всех так их наборов функцио налов; С2n, 2 — множество всех н аборов из 2n функциона лов вида $$T_{2n} (f) = \{ f(x_1 ), \ldots ,f(x_n ),f'(x_1 ), \ldots ,f'(x_n )\}$$ и s: Еn→Е1. Доказано, что е слиW r множество всех 2π-периодических функ цийfεW∞0, 2πr, то приr=1,2,3,... ирε(1, ∞) и $$\begin{gathered} \mathop {\inf }\limits_{T_{2n} \in A_{2n,r} } \parallel \mathop {\inf }\limits_s \mathop {\sup }\limits_{f \in W_\infty ^r } |f( \cdot ) - s(T_{2n} ,f, \cdot )|\parallel _p = \parallel \varphi _{n,r} \parallel _p \hfill \\ \mathop {\inf }\limits_{T_{2n} \in C_{2n,2} } \parallel \mathop {\inf }\limits_s \mathop {\sup }\limits_{f \in W_\infty ^r } |f( \cdot ) - s(T_{2n} ,f, \cdot )|\parallel _p = \parallel \parallel \varphi _{n,r} \parallel _\infty - \varphi _{n,r} \parallel _p , \hfill \\ \end{gathered}$$ где ?n,rr-й периодичес кий интеграл, в средне м равный нулю на периоде, от фун кции ?n, 0t=sign sinnt. При этом указан ы оптимальные методы приближенного вычис ления.  相似文献   

2.
A difference scheme is constructed for the solution of the variational equation $$\begin{gathered} a\left( {u, v} \right)---u \geqslant \left( {f, v---u} \right)\forall v \varepsilon K,K \{ vv \varepsilon W_2^2 \left( \Omega \right) \cap \mathop {W_2^1 \left( \Omega \right)}\limits^0 ,\frac{{\partial v}}{{\partial u}} \geqslant 0 a.e. on \Gamma \} ; \hfill \\ \Omega = \{ x = (x_1 ,x_2 ):0 \leqslant x_\alpha< l_\alpha ,\alpha = 1, 2\} \Gamma = \bar \Omega - \Omega ,a(u, v) = \hfill \\ = \int\limits_\Omega {\Delta u\Delta } vdx \equiv (\Delta u,\Delta v, \hfill \\ \end{gathered} $$ The following bound is obtained for this scheme: $$\left\| {y - u} \right\|_{W_2 \left( \omega \right)}^2 = 0(h^{(2k - 5)/4} )u \in W_2^k \left( \Omega \right),\left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0(h^{\min (k - 2;1,5)/2} ),u \in W_\infty ^k \left( \Omega \right) \cap W_2^3 \left( \Omega \right)$$ The following bounds are obtained for the mixed boundary-value problem: $$\begin{gathered} \left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0\left( {h^{\min \left( {k - 2;1,5} \right)} } \right),u \in W_\infty ^k \left( \Omega \right),\left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0\left( {h^{k - 2,5} } \right), \hfill \\ u \in W_2^k \left( \Omega \right),k \in \left[ {3,4} \right] \hfill \\ \end{gathered} $$ .  相似文献   

3.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

4.
We prove the well-posed solvability in the strong sense of the boundary value Problems
$$\begin{gathered} ( - 1)\frac{{_m d^{2m + 1} u}}{{dt^{2m + 1} }} + \sum\limits_{k = 0}^{m - 1} {\frac{{d^{k + 1} }}{{dt^{k + 1} }}} A_{2k + 1} (t)\frac{{d^k u}}{{dt^k }} + \sum\limits_{k = 1}^m {\frac{{d^k }}{{dt^k }}} A_{2k} (t)\frac{{d^k u}}{{dt^k }} + \lambda _m A_0 (t)u = f, \hfill \\ t \in ]0,t[,\lambda _m \geqslant 1, \hfill \\ {{d^i u} \mathord{\left/ {\vphantom {{d^i u} {dt^i }}} \right. \kern-\nulldelimiterspace} {dt^i }}|_{t = 0} = {{d^j u} \mathord{\left/ {\vphantom {{d^j u} {dt^j }}} \right. \kern-\nulldelimiterspace} {dt^j }}|_{t = T} = 0,i = 0,...,m,j = 0,...,m - 1,m = 0,1,..., \hfill \\ \end{gathered} $$
where the unbounded operators A s (t), s > 0, in a Hilbert space H have domains D(A s (t)) depending on t, are subordinate to the powers A 1?(s?1)/2m (t) of some self-adjoint operators A(t) ≥ 0 in H, are [(s+1)/2] times differentiable with respect to t, and satisfy some inequalities. In the space H, the maximally accretive operators A 0(t) and the symmetric operators A s (t), s > 0, are approximated by smooth maximally dissipative operators B(t) in such a way that
$$\begin{gathered} \mathop {lim}\limits_{\varepsilon \to 0} Re(A_0 (t)B_\varepsilon ^{ - 1} (t)(B_\varepsilon ^{ - 1} (t))^ * u,u)_H = Re(A_0 (t)u,u)_H \geqslant c(A(t)u,u)_H \hfill \\ \forall u \in D(A_0 (t)),c > 0, \hfill \\ \end{gathered} $$
, where the smoothing operators are defined by
$$B_\varepsilon ^{ - 1} (t) = (I - \varepsilon B(t))^{ - 1} ,(B_\varepsilon ^{ - 1} (t)) * = (I - \varepsilon B^ * (t))^{ - 1} ,\varepsilon > 0.$$
.
  相似文献   

5.
Let X and Y be fences of size n and m, respectively and n, m be either both even or both odd integers (i.e., |m-n| is an even integer). Let \(r = \left\lfloor {{{(n - 1)} \mathord{\left/ {\vphantom {{(n - 1)} 2}} \right. \kern-0em} 2}} \right\rfloor\) . If 1<n<-m then there are \(a_{n,m} = (m + 1)2^{n - 2} - 2(n - 1)(\begin{array}{*{20}c} {n - 2} \\ r \\ \end{array} )\) of strictly increasing mappings of X to Y. If 1<-m<-n<-2m and s=1/2(n?m) then there are a n,m+b n,m+c n of such mappings, where $$\begin{gathered} b_{n,m} = 8\sum\limits_{i = 0}^{s - 2} {\left( {\begin{array}{*{20}c} {m + 2i + 1} \\ l \\ \end{array} } \right)4^{s - 2 - 1} } \hfill \\ {\text{ }}c_n = \left\{ \begin{gathered} \left( {\begin{array}{*{20}c} {n - 1} \\ {s - 1} \\ \end{array} } \right){\text{ if both }}n,m{\text{ are even;}} \hfill \\ {\text{ 0 if both }}n,m{\text{ are odd}}{\text{.}} \hfill \\ \end{gathered} \right. \hfill \\ \end{gathered} $$   相似文献   

6.
The variety \(\mathfrak{u}_{m,n} \) is defined by the system of n-ary operations ωi,..., ωm, the system of m-ary operations ?i,..., ?n, 1≤ m ≤ n, and the system of identities $$\begin{gathered} x_1 ...x_n \omega _1 ...x_1 ...x_n \omega _m \varphi _i = x_i (i = 1,...,n), \hfill \\ x_1 ...x_m \varphi _1 ...x_1 ...x_m \varphi _n \omega _j = x_j (i = 1,...,m), \hfill \\ \end{gathered} $$ It is proved in this paper that the subalgebra U of the free product \(\Pi _{i \in I}^* A_i \) of the algebras Ai (i ε I) can be expanded as the free product of nonempty intersections U ∩ Ai (i ε I) and a free algebra.  相似文献   

7.
We derive the solvability conditions and an expression of the general solution to the system of matrix equations A 1X=C1 , A2Y=C2 , YB2=D2 , Y=Y*, A3Z=C3 , ZB3=D3 , Z=Z*, B4X+(B4X)+C4YC4*+D4ZD4*=A4 . Moreover, we investigate the maximal and minimal ranks and inertias of Y and Z in the above system of matrix equations. As a special case of the results, we solve the problem proposed in Farid, Moslehian, Wang and Wu’s recent paper (Farid F O, Moslehian M S, Wang Q W, et al. On the Hermitian solutions to a system of adjointable operator equations. Linear Algebra Appl, 2012, 437: 1854-1891).  相似文献   

8.
The estimate is obtained for the diameter d(Sn(a)) of the set Sn(a) of midpoints of chords of length ≥a(0n, namely $$d(S_n (a)) \leqslant \left\{ \begin{gathered} 1 - a^2 /2, n = 2, \hfill \\ \sqrt {1 - a^2 /2,} n \geqslant 3, \hfill \\ \end{gathered} \right.$$ and it is shown that the inequality cannot be improved.  相似文献   

9.
Estimates are obtained for the nonsymmetric deviations Rn [sign x] and Rn [sign x]L of the function sign x from rational functions of degree ≤n, respectively, in the metric $$c([ - 1, - \delta ] \cup [\delta ,1]), 0< \delta< exp( - \alpha \surd \overline n ), \alpha > 0,$$ and in the metric L[?1, 1]: $$\begin{gathered} R_n [sign x] _{\frown }^\smile exp \{ - \pi ^2 n/(2 ln 1/\delta )\} , n \to \infty , \hfill \\ 10^{ - 3} n^{ - 2} \exp ( - 2\pi \surd \overline n )< R_n [sign x_{|L}< \exp ( - \pi \surd \overline {n/2} + 150). \hfill \\ \end{gathered} $$ Let 0 < δ < 1, Δ (δ)=[?1, ? δ] ∪ [δ, 1]; $$\begin{gathered} R_n [f;\Delta (\delta )] = R_n [f] = inf max |f(x) - R(x)|, \hfill \\ R_n [f;[ - 1,1] ]_L = R_n [f]_L = \mathop {inf}\limits_{R(x)} \smallint _{ - 1}^1 |f(x) - R(x)|dx, \hfill \\ \end{gathered} $$ where R(x) is a rational function of order at most n. Bulanov [1] proved that for δ ε [e?n, e?1] the inequality $$\exp \left( {\frac{{\pi ^2 n}}{{2\ln (1/\delta }}} \right) \leqslant R_n [sign x] \leqslant 30 exp\left( {\frac{{\pi ^2 n}}{{2\ln (1/\delta + 4 ln ln (e/\delta ) + 4}}} \right)$$ is valid. The lower estimate in this inequality was previously obtained by Gonchar ([2], cf. also [1]).  相似文献   

10.
We obtain sufficient conditions for the nontrivial solvability of systems of the form $$ \phi _i = b_i + \lambda _i \sum\limits_{j = 0}^\infty {a_{i - j} \phi _j ,i \in \mathbb{Z}_ + \underline{\underline {def}} \{ 0,1,2...,n,...\} ,} $$ and of the corresponding homogeneous systems. It is assumed that the sequences b = (b 0, b 1, b 2, …) and λ = (λ 0, λ 1, λ 2, …) and the Toeplitz matrix A = (a i?j ) satisfy the conditions $$ \begin{gathered} a_j \geqslant 0,j \in \mathbb{Z},\sum\limits_{j = - \infty }^\infty {a_j = 1,} \sum\limits_{j = - \infty }^\infty {|j|a_j < \infty ,\sum\limits_{j = - \infty }^\infty {ja_j < 0,} } \hfill \\ b_j \geqslant 0,j \in \mathbb{Z},\sum\limits_{j = 0}^\infty {b_j = \infty ,} 1 \leqslant \lambda _i \leqslant \left( {\sum\limits_{j = - \infty }^i {a_j } } \right)^{ - 1} ,i \in \mathbb{Z}_ + . \hfill \\ \end{gathered} $$ . Under these conditions, we construct bounded solutions of homogeneous and inhomogeneous systems of the form indicated above.  相似文献   

11.
A matrix is said to be accretive-dissipative if, in its Hermitian decomposition , both matrices B and C are positive definite. Further, if B= I n, then A is called a Buckley matrix. The following extension of the classical Fischer inequality for Hermitian positive-definite matrices is proved. Let be an accretive-dissipative matrix, k and l be the orders of A 11 and A 22, respectively, and let m = min{k,l}. Then For Buckley matrices, the stronger bound is obtained. Bibliography: 5 titles.  相似文献   

12.
We prove some 3-adic congruences for binomial sums,which were conjectured by Zhi-Wei Sun.For example,for any integer m≡1(mod 3)and any positive integer n,we have31n n.1Xk=01mk 2k kmin{3(n),3(m.1).1},where 3(n)denotes the 3-adic order of n.In our proofs,we use several auxiliary combinatorial identities and a series converging to 0 over the 3-adic field.  相似文献   

13.
The problem of finding the asymptotic number of solutions of the system of inequalities $$\begin{gathered} \left\| {\alpha _i q} \right\|< q^{ - \sigma _i } (i = 1,...,n), \sigma _i > 0, \hfill \\ \sigma = \sum\nolimits_{i = 1}^n {\sigma _i< c(\alpha _1 ,...,\alpha _n ), q = 1,...,N,} \hfill \\ \end{gathered}$$ is solved under the assumption that for real numbers α1,..., αn, starting from some Q=max(q1...,qn) the inequality holds for any real λ≥0.  相似文献   

14.
We consider the simultaneous equations $$\begin{gathered} p_1^{\alpha _1 } p_2^{\alpha _2 } ...p_n^{\alpha _n } = P_1 P_2 \hfill \\ p_{n + 1} = P_1 - P_2 \hfill \\ \end{gathered} $$ wherep 1,p 2,...,p n+1 are then+1 first primes and α1,...,α n ,P 1,P 2 are integers. The equations are solved completely forn≦3 and all solutions given under certain restrictions on the α i 's forn≦9.  相似文献   

15.
In this paper we evaluate the inverse Laplace transform of $$\begin{gathered} s^{ - \eta } (s^{l_1 } + \lambda _1 )^{ - \sigma } (s^{l_2 } + \lambda _2 )^{ - \rho } \hfill \\ \times S_n^m [xs^{ - W} (S^{l_1 } + \lambda _1 )^{ - \upsilon } (S^{l_2 } + \lambda _2 )^{ - w} ]S_{n'}^{m'} [ys^{ - w'} (S^{l_1 } + \lambda _1 )^{ - \upsilon '} (S^{l_2 } + \lambda _2 )^{ - w_r } ] \hfill \\ \times H[z_1 s^{ - W_1 } (S^{l_1 } + \lambda _1 )^{ - \upsilon _1 } (S^{l_2 } + \lambda _2 )^{ - w_1 } ,...,z_r s^{ - w_r } (S^{l_1 } + \lambda _1 )^{ - \upsilon _r } (S^{l_2 } + \lambda _2 )^{ - w'} ] \hfill \\ \end{gathered} $$ Due to the general nature of the multivariable H-function involved herein, the inverse Laplace transform of the product of a large number of special functions involving one or more variables, occurring frequently in the problems of theoretical physics and engineering sciences can be obtained as simple special cases of our main findings. For the sake of illustration, we obtain here the inverse Laplace transform of a product of the Hermite polynomials, the Jacobi polynomials andr different modified Bessel functions of the second kind. A theorem obtained by Srivastava and Singh[7] follows as a special case of our main result.  相似文献   

16.
We give some “rational analoga” to metric results in the classical theory of the diophantine approximation of zero by linear forms. That is: we study the behaviour of expressions of the form $$\begin{gathered} \lim _{m \to \infty } \frac{1}{{\left| {P_s (m)} \right|}}|\{ (x_1 , \ldots ,x_s ) \in P_s (m): \hfill \\ \parallel a_1 \frac{{x_1 }}{m} + \ldots + a_s \frac{{x_s }}{m}\parallel _m \geqslant \psi (a_1 , \ldots ,a_s ,m) \hfill \\ for all - \frac{m}{2}< a_1 , \ldots ,a_s \leqslant \frac{m}{2}, \hfill \\ with (a_1 , \ldots ,a_s ) \ne (0, \ldots ,0)\} |, \hfill \\ \end{gathered} $$ whereP s (m) is a certain subset of {1, …,m} s , ψ is a certain nonnegative function, and ‖ · ‖ m means the maximum of 1/m and the distance to the nearest integer. Some of the investigations are also motivated by problems in the theory of uniform distribution and of pseudo-random number generation. The results partly depend on the validity of the generalized Riemann hypothesis.  相似文献   

17.
Let ψ123,... be an orthonormal basis of the space of cusp forms of weight zero for the full modular group. Let be the Fourier series expansion. The following theorem is proved: Let σ∈(1/4, 1/2); letf be a holomorphic function on the strip |Res|≦σ, satisfyingf(?s)=f(s) and $$f(s) = \mathcal{O}(|\tfrac{1}{4} - s^2 |^{ - 2} |cos \pi s|^{ - 1} )$$ on this strip; letm andn be non-zero integers, then $$\sum\limits_{j = 1}^\infty {f(s_j )\bar \gamma _{jm} \gamma _{jn} } $$ converges and is equal to $$\begin{gathered} - (2\pi i)^{ - 1} \int\limits_{\operatorname{Re} s = 0} {f(s)c_{00} ( - s)c_{0|m|} (s)c_{0|n|} (s)ds} \hfill \\ + (2\pi i)^{ - 1} (4\pi |m|)^{ - 1} \int\limits_{\operatorname{Re} s = 0} {f(s)c_{mn} (s)2sds} \hfill \\ - \delta _{mn} (2\pi i)^{ - 1} (4\pi |m|)^{ - 1} \int\limits_{\operatorname{Re} s = 0} {f(s)\sin \pi s2sds.} \hfill \\ \end{gathered} $$ The functionsc 00(s) andc 0|m|(s) are coefficients occurring in the Fourier series expansion of the Eisenstein series; the functionc mn(s) is a coefficient in the Fourier series expansion of a Poincaré series. The theorem is applied to obtain some asymptotic results concerning the Fourier coefficients γjn. Under additional conditions on the functionf the formula in the theorem is modified in such a way that the Fourier coefficients of holomorphic cusp forms appear.  相似文献   

18.
In this paper, we prove that ifZFC is consistent, then so are the following theories: $$\begin{gathered} ZFC + MA + KT(\omega _2 ) + 2^{\aleph _0 } = \aleph _2 , \hfill \\ ZFC + SOCA + KT(\omega _2 ), \hfill \\ ZFC + SOCA1 + KT(\omega _2 ), \hfill \\ ZFC + OCA + KT(\omega _2 ), \hfill \\ ZFC + ISA + KT(\omega _2 ), \hfill \\ \end{gathered} $$ whereMA denotes Martin's axiom.KT(ω 2) the statement:“There exists anω 2-Kurepa tree”, andSOCA, SOCA1,OCA andISA are axioms introduced in [1].  相似文献   

19.
A high order discretization by spectral collocation methods of the elliptic problem $$\begin{gathered} \left\{ \begin{gathered} A_{A,b} u \equiv - \nabla [A(x)\nabla u(x)] + b(x)u(x) = c(x){\text{ on}}\;\Omega \; = ( - 1,1)^2 \hfill \\ u\left| {\partial \Omega \equiv 0,} \right. \hfill \\ \end{gathered} \right. \hfill \\ \hfill \\ \end{gathered} $$ is considered where A(x)=a(x)I 2, x=(x [1],x [2]) and I 2 denotes the 2×2 identity matrix, giving rise to a sequence of dense linear systems that are optimally preconditioned by using the sparse Finite Difference (FD) matrix-sequence {A n } n over the nonuniform grid sequence defined via the collocation points [11]. Here we propose a preconditioning strategy for {A n } n based on the “approximate factorization” idea. More specifically, the preconditioning sequence {P n } n is constructed by using two basic structures: a FD discretization of (1) with A(x)=I 2 over the collocation points, which is interpreted as a FD discretization over an equidistant grid of a suitable separable problem, and a diagonal matrix which adds the informative content expressed by the weight function a(x). The main result is the proof that the sequence {P n ?1 A n } n is spectrally clustered at unity so that the solution of the nonseparable problem (1) is reduced to the solution of a separable one, this being computationally more attractive [2,3]. Several numerical experiments confirm the goodness of the discussed proposal.  相似文献   

20.
A polyhedral functionlp(Δn) (f). interpolating a function f, defined on a polygon Φ, is defined by a set of interpolating nodes Δn ?Φ and a partition P(Δn) of the polygon Φ into triangles with vertices at the points of Δn. In this article we will compute for convex moduli of continuity the quatities $$\begin{gathered} E (H_\Phi ^\omega ; P (\Delta _n )) = sup || f - l_{p(\Delta _n )} (f)||, \hfill \\ f \in H_\Phi ^\omega \hfill \\ \end{gathered} $$ and also give an asymptotic estimate of the quantities $$\begin{gathered} E_n (H_\Phi ^\omega ) = infinf E (H_\Phi ^\omega ; P (\Delta _n )). \hfill \\ \Delta _n P(\Delta _n ) \hfill \\ \end{gathered} $$   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号