首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
由于服务管理的复杂性和模糊性,现有方法难以有效解决基于主观语言评价的服务质量改进问题。本文拓展了质量功能展开(QFD)方法在服务业中的应用,通过构建一个模糊线性规划模型,以求解最大化提高顾客需求综合满意度的企业能力优化配置问题。首先基于顾客感知-期望差距的模糊评估确定顾客需求、需求权重和边界约束等模型参数,接着运用模糊线性回归和非对称三角模糊数的隶属函数,将含有模糊变量的模糊线性规划问题转化为经典线性规划问题,进而求得不同模糊条件下的模型解。最后通过网购平台的实例验证了模型的有效性和可行性。  相似文献   

2.
Linear regression has been used for many years in developing mathematical models for application in marketing, management, and sales forecasting. In this paper, two different sales forecasting techniques are discussed. The first technique involves non-fuzzy abstract methods of linear regression and econometrics. A study of the international market sales of cameras, done in 1968 by John Scott Armstrong, utilized these non-fuzzy forecasting techniques. The second sales forecasting technique uses fuzzy linear regression introduced by H. Tanaka, S. Uejima, and K. Asai, in 1980. In this paper, a study of the computer and peripheral equipment sales in the United States is discussed using fuzzy linear regression. Moreover, fuzzy linear regression is applied to forecasting in an uncertain environment. Finally, some possible improvements and suggestions for further study are mentioned.  相似文献   

3.
This paper considers Stackelberg solutions for two-level linear programming problems under fuzzy random environments. To deal with the formulated fuzzy random two-level linear programming problem, an α-stochastic two-level linear programming problem is defined through the introduction of α-level sets of fuzzy random variables. Taking into account vagueness of judgments of decision makers, fuzzy goals are introduced and the α-stochastic two-level linear programming problem is transformed into the problem to maximize the satisfaction degree for each fuzzy goal. Through fractile criterion optimization in stochastic programming, the transformed stochastic two-level programming problem can be reduced to a deterministic two-level programming problem. An extended concept of Stackelberg solution is introduced and a numerical example is provided to illustrate the proposed method.  相似文献   

4.
In this paper, by considering the experts' vague or fuzzy understanding of the nature of the parameters in the problem formulation process, multiobjective linear fractional programming problems with block angular structure involving fuzzy numbers are formulated. Using the a-level sets of fuzzy numbers, the corresponding nonfuzzy a-multiobjective linear fractional programming problem is introduced. The fuzzy goals of the decision maker for the objective functions are quantified by eliciting the corresponding membership functions including nonlinear ones. Through the introduction of extended Pareto optimality concepts, if the decision maker specifies the degree a and the reference membership values, the corresponding extended Pareto optimal solution can be obtained by solving the minimax problems for which the Dantzig-Wolfe decomposition method and Ritter's partitioning procedure are applicable. Then a linear programming-based interactive fuzzy satisficing method with decomposition procedures for deriving a satisficing solution for the decision maker efficiently from an extended Pareto optimal solution set is presented. An illustrative numerical example is provided to demonstrate the feasibility of the proposed method.  相似文献   

5.
Editorial     
Linear programming problems with fuzzy parameters are formulated by fuzzy functions. The ambiguity considered here is not randomness, but fuzziness which is associated with the lack of a sharp transition from membership to nonmembership. Parameters on constraint and objective functions are given by fuzzy numbers. In this paper, our object is the formulation of a fuzzy linear programming problem to obtain a reasonable solution under consideration of the ambiguity of parameters. This fuzzy linear programming problem with fuzzy numbers can be regarded as a model of decision problems where human estimation is influential.  相似文献   

6.
This paper considers a class of bilevel linear programming problems in which the coefficients of both objective functions are fuzzy random variables. The main idea of this paper is to introduce the Pareto optimal solution in a multi-objective bilevel programming problem as a solution for a fuzzy random bilevel programming problem. To this end, a stochastic interval bilevel linear programming problem is first introduced in terms of α-cuts of fuzzy random variables. On the basis of an order relation of interval numbers and the expectation optimization model, the stochastic interval bilevel linear programming problem can be transformed into a multi-objective bilevel programming problem which is solved by means of weighted linear combination technique. In order to compare different optimal solutions depending on different cuts, two criterions are given to provide the preferable optimal solutions for the upper and lower level decision makers respectively. Finally, a production planning problem is given to demonstrate the feasibility of the proposed approach.  相似文献   

7.
This paper investigates properties of integer programming models for a class of production planning problems. The models are developed within a decision support system to advise a sales team of the products on which to focus their efforts in gaining new orders in the short term. The products generally require processing on several manufacturing cells and involve precedence relationships. The cells are already (partially) committed with products for stock and to satisfy existing orders and therefore only the residual capacities of each cell in each time period of the planning horizon are considered. The determination of production recommendations to the sales team that make use of residual capacities is a nontrivial optimization problem. Solving such models is computationally demanding and techniques for speeding up solution times are highly desirable. An integer programming model is developed and various preprocessing techniques are investigated and evaluated. In addition, a number of cutting plane approaches have been applied. The performance of these approaches which are both general and application specific is examined.  相似文献   

8.
Real decision problems usually consider several objectives that have parameters which are often given by the decision maker in an imprecise way. It is possible to handle these kinds of problems through multiple criteria models in terms of possibility theory.Here we propose a method for solving these kinds of models through a fuzzy compromise programming approach.To formulate a fuzzy compromise programming problem from a possibilistic multiobjective linear programming problem the fuzzy ideal solution concept is introduced. This concept is based on soft preference and indifference relationships and on canonical representation of fuzzy numbers by means of their α-cuts. The accuracy between the ideal solution and the objective values is evaluated handling the fuzzy parameters through their expected intervals and a definition of discrepancy between intervals is introduced in our analysis.  相似文献   

9.
Ghatee and Hashemi [M. Ghatee, S.M. Hashemi, Ranking function-based solutions of fully fuzzified minimal cost flow problem, Inform. Sci. 177 (2007) 4271–4294] transformed the fuzzy linear programming formulation of fully fuzzy minimal cost flow (FFMCF) problems into crisp linear programming formulation and used it to find the fuzzy optimal solution of balanced FFMCF problems. In this paper, it is pointed out that the method for transforming the fuzzy linear programming formulation into crisp linear programming formulation, used by Ghatee and Hashemi, is not appropriate and a new method is proposed to find the fuzzy optimal solution of multi-objective FFMCF problems. The proposed method can also be used to find the fuzzy optimal solution of single-objective FFMCF problems. To show the application of proposed method in real life problems an existing real life FFMCF problem is solved.  相似文献   

10.
The purpose of this paper is to propose a procedure for solving multilevel programming problems in a large hierarchical decentralized organization through linear fuzzy goal programming approach. Here, the tolerance membership functions for the fuzzily described objectives of all levels as well as the control vectors of the higher level decision makers are defined by determining individual optimal solution of each of the level decision makers. Since the objectives are potentially conflicting in nature, a possible relaxation of the higher level decision is considered for avoiding decision deadlock. Then fuzzy goal programming approach is used for achieving highest degree of each of the membership goals by minimizing negative deviational variables. Sensitivity analysis with variation of tolerance values on decision vectors is performed to present how the solution is sensitive to the change of tolerance values. The efficiency of our concept is ascertained by comparing results with other fuzzy programming approaches.  相似文献   

11.
研究属性权重未知情况下的多属性评价问题。对决策矩阵进行规范化,将各被评价方案的综合评价值记为含未知属性权重的表达式,决策者对各评价方案的主观判断以区间数形式表示,并导出区间数判断矩阵的权重。根据含未知属性权重的被评价方案的综合评价值与决策者主观判断的模糊包含关系,提出采用模糊线性规划模型求解属性权重,并研究模型的应用范围。  相似文献   

12.
This paper discusses full fuzzy linear programming (FFLP) problems of which all parameters and variable are triangular fuzzy numbers. We use the concept of the symmetric triangular fuzzy number and introduce an approach to defuzzify a general fuzzy quantity. For such a problem, first, the fuzzy triangular number is approximated to its nearest symmetric triangular number, with the assumption that all decision variables are symmetric triangular. An optimal solution to the above-mentioned problem is a symmetric fuzzy solution. Every FLP models turned into two crisp complex linear problems; first a problem is designed in which the center objective value will be calculated and since the center of a fuzzy number is preferred to (its) margin. With a special ranking on fuzzy numbers, the FFLP transform to multi objective linear programming (MOLP) where all variables and parameters are crisp.  相似文献   

13.
In conventional multiobjective decision making problems, the estimation of the parameters of the model is often a problematic task. Normally they are either given by the decision maker (DM), who has imprecise information and/or expresses his considerations subjectively, or by statistical inference from past data and their stability is doubtful. Therefore, it is reasonable to construct a model reflecting imprecise data or ambiguity in terms of fuzzy sets for which a lot of fuzzy approaches to multiobjective programming have been developed. In this paper we propose a method to solve a multiobjective linear programming problem involving fuzzy parameters (FP-MOLP), whose possibility distributions are given by fuzzy numbers, estimated from the information provided by the DM. As the parameters, intervening in the model, are fuzzy the solutions will be also fuzzy. We propose a new Pareto Optimal Solution concept for fuzzy multiobjective programming problems. It is based on the extension principle and the joint possibility distribution of the fuzzy parameters of the problem. The method relies on α-cuts of the fuzzy solution to generate its possibility distributions. These ideas are illustrated with a numerical example.  相似文献   

14.
含有模糊决策的线性分布式多目标规划   总被引:1,自引:0,他引:1  
针对实际问题中决策变量通常是模糊的情况,讨论具有块角结构的含有模糊决策的线性分式多目标规划模型。使用α-水平集,建立了对应的α-多目标规划模型。为解决这类问题,设计了基于模糊模拟的遗传算法。数值例子表明,遗传算法很好地解决了这个问题。  相似文献   

15.
This paper describes the use of preemptive priority based fuzzy goal programming method to fuzzy multiobjective fractional decision making problems under the framework of multistage dynamic programming. In the proposed approach, the membership functions for the defined objective goals with fuzzy aspiration levels are determined first without linearizing the fractional objectives which may have linear or nonlinear forms. Then the problem is solved recursively for achievement of the highest membership value (unity) by using priority based goal programming methodology at each decision stages and thereby identifying the optimal decision in the present decision making arena. A numerical example is solved to represent potentiality of the proposed approach.  相似文献   

16.
The aim of this paper is to deal with a multiobjective linear programming problem with fuzzy random coefficients. Some crisp equivalent models are presented and a traditional algorithm based on an interactive fuzzy satisfying method is proposed to obtain the decision maker’s satisfying solution. In addition, the technique of fuzzy random simulation is adopted to handle general fuzzy random objective functions and fuzzy random constraints which are usually hard to be converted into their crisp equivalents. Furthermore, combined with the techniques of fuzzy random simulation, a genetic algorithm using the compromise approach is designed for solving a fuzzy random multiobjective programming problem. Finally, illustrative examples are given in order to show the application of the proposed models and algorithms.  相似文献   

17.
In the article, Veeramani and Sumathi [10] presented an interesting algorithm to solve a fully fuzzy linear fractional programming (FFLFP) problem with all parameters as well as decision variables as triangular fuzzy numbers. They transformed the FFLFP problem under consideration into a bi-objective linear programming (LP) problem, which is then converted into two crisp LP problems. In this paper, we show that they have used an inappropriate property for obtaining non-negative fuzzy optimal solution of the same problem which may lead to the erroneous results. Using a numerical example, we show that the optimal fuzzy solution derived from the existing model may not be non-negative. To overcome this shortcoming, a new constraint is added to the existing fuzzy model that ensures the fuzzy optimal solution of the same problem is a non-negative fuzzy number. Finally, the modified solution approach is extended for solving FFLFP problems with trapezoidal fuzzy parameters and illustrated with the help of a numerical example.  相似文献   

18.
This paper proposes a method for solving fuzzy multi-objective linear programming (FMOLP) problems where all the coefficients are triangular fuzzy numbers and all the constraints are fuzzy equality or inequality. Using the deviation degree measures and weighted max–min method, the FMOLP problem is transformed into crisp linear programming (CLP) problem. If decision makers fix the values of deviation degrees of two side fuzzy numbers in each constraint, then the δ-pareto-optimal solution of the FMOLP problems can be obtained by solving the CLP problem. The bigger the values of the deviation degrees are, the better the objectives function values will be. So we also propose an algorithm to find a balance-pareto-optimal solution between two goals in conflict: to improve the objectives function values and to decrease the values of the deviation degrees. Finally, to illustrate our method, we solve a numerical example.  相似文献   

19.
模糊环境下带有平衡条件的投资项目评估与选择决策方法   总被引:1,自引:0,他引:1  
文章提出在模糊环境下求解带有平衡条件的投资项目评估与选择问题的决策方法。该方法由模糊综合评价系统和项目选择的模糊整数规划模型两部分组成。其中模糊综合评价系统采用三角模糊数来描述决策人对项目的主观评价以及多个评价因素的综合,而模糊整数规划模型则描述了各种不同门类利益之间的平衡。最后以实例说明该方法的应用。  相似文献   

20.
《Applied Mathematical Modelling》2014,38(7-8):2101-2117
The theory of interval-valued intuitionistic fuzzy sets is useful and beneficial for handling uncertainty and imprecision in multiple criteria decision analysis. In addition, the theory allows for convenient quantification of the equivocal nature of human subjective assessments. In this paper, by extending the traditional linear assignment method, we propose a useful method for solving multiple criteria evaluation problems in the interval-valued intuitionistic fuzzy context. A ranking procedure consisting of score functions, accuracy functions, membership uncertainty indices, and hesitation uncertainty indices is presented to determine a criterion-wise preference of the alternatives. An extended linear assignment model is then constructed using a modified weighted-rank frequency matrix to determine the priority order of various alternatives. The feasibility and applicability of the proposed method are illustrated with a multiple criteria decision-making problem involving the selection of a bridge construction method. Additionally, a comparative analysis with other methods, including the approach with weighted aggregation operators, the closeness coefficient-based method, and the auxiliary nonlinear programming models, has been conducted for solving the investment company selection problem to validate the effectiveness of the extended linear assignment method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号