首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
In this paper the concept of convexity in directed graphs is described. It is shown that the set of convex subgraphs of a directed graph G partially ordered by inclusion forms a complete, semimodular, A-regular lattice, denoted ?G. The lattice theoretic properties of the convex subgraph lattice lead to inferences about the path structure of the original graph G. In particular, a graph factorization theorem is developed. In Section 4, several graph homomorphism concepts are investigated in relation to the preservation of convexity properties. Finally we characterize an interesting class of locally convex directed graphs.  相似文献   

2.
A set of vertices S in a graph G is a routing set if it ensures some kind of connectivity between all pairs of vertices outside of S. Additional constraints may apply; a connected dominating set, for instance, is a special case of a routing set. We determine the size of a minimum routing set in subgraphs of the integer lattice, as well as (asymptotically) for the lattice itself.  相似文献   

3.
In this paper, we show that if a partially ordered set has 2n elements and has dimension n, then it is isomorphic to the set of n?1 element subsets and 1element subsets of a set, ordered by inclusion, or else it has six elements and is isomorphic to a partially ordered set we call the chevron or to its dual.  相似文献   

4.
The dimension of a partially ordered set P is the smallest integer n (if it exists) such that the partial order on P is the intersection of n linear orders. It is shown that if L is a lattice of dimension two containing a sublattice isomorphic to the modular lattice M2n+1, then every generating set of L has at least n+2 elements. A consequence is that every finitely generated lattice of dimension two and with no infinite chains is finite.  相似文献   

5.
For an ordered set W = {w 1, w 2,..., w k} of vertices and a vertex v in a connected graph G, the representation of v with respect to W is the k-vector r(v|W) = (d(v, w 1), d(v, w 2),... d(v, w k)), where d(x, y) represents the distance between the vertices x and y. The set W is a resolving set for G if distinct vertices of G have distinct representations with respect to W. A resolving set for G containing a minimum number of vertices is a basis for G. The dimension dim(G) is the number of vertices in a basis for G. A resolving set W of G is connected if the subgraph 〈W〉 induced by W is a nontrivial connected subgraph of G. The minimum cardinality of a connected resolving set in a graph G is its connected resolving number cr(G). Thus 1 ≤ dim(G) ≤ cr(G) ≤ n?1 for every connected graph G of order n ≥ 3. The connected resolving numbers of some well-known graphs are determined. It is shown that if G is a connected graph of order n ≥ 3, then cr(G) = n?1 if and only if G = K n or G = K 1,n?1. It is also shown that for positive integers a, b with ab, there exists a connected graph G with dim(G) = a and cr(G) = b if and only if $\left( {a,b} \right) \notin \left\{ {\left( {1,k} \right):k = 1\;{\text{or}}\;k \geqslant 3} \right\}$ Several other realization results are present. The connected resolving numbers of the Cartesian products G × K 2 for connected graphs G are studied.  相似文献   

6.
Let G=(V,E) be a graph with V={1,2,…,n}. Define S(G) as the set of all n×n real-valued symmetric matrices A=[aij] with aij≠0,ij if and only if ijE. By M(G) we denote the largest possible nullity of any matrix AS(G). The path cover number of a graph G, denoted P(G), is the minimum number of vertex disjoint paths occurring as induced subgraphs of G which cover all the vertices of G.There has been some success with relating the path cover number of a graph to its maximum nullity. Johnson and Duarte [5], have shown that for a tree T,M(T)=P(T). Barioli et al. [2], show that for a unicyclic graph G,M(G)=P(G) or M(G)=P(G)-1. Notice that both families of graphs are outerplanar. We show that for any outerplanar graph G,M(G)?P(G). Further we show that for any partial 2-path G,M(G)=P(G).  相似文献   

7.
As is well known, the cycles of any given graph G may be regarded as the circuits of a matroid defined on the edge set of G. The question of whether other families of connected graphs exist such that, given any graph G, the subgraphs of G isomorphic to some member of the family may be regarded as the circuits of a matroid defined on the edge set of G led us, in two other papers, to the proof of some results concerning properties of the cycles when regarded as circuits of such matroids. Here we prove that the wheels share many of these properties with the cycles. Moreover, properties of subgraphs which may be regarded as bases of such matroids are also investigated.  相似文献   

8.
9.
Given a simple graph G on n vertices, we prove that it is possible to reconstruct several algebraic properties of the edge ideal from the deck of G, that is, from the collection of subgraphs obtained by removing a vertex from G. These properties include the Krull dimension, the Hilbert function, and all the graded Betti numbers βi,j where j<n. We also state many further questions that arise from our study.  相似文献   

10.
The complete graph Kn, is said to have a G-decomposition if it is the union of edge disjoint subgraphs each isomorphic to G. The set of values of n for which Kn has a G-decomposition is determined if G has four vertices or less.  相似文献   

11.
In his paper [17], Sabidussi defined the X-join of a family of graphs. Cowan, James, Stanton gave in [6] and O(n4) algorithm that decomposes a graph, when possible, into the X-join of the family of its subgraphs. We give here another approach using an equivalence relation on the edge set of the graph. We prove that if G and its complement are connected then there exists an unique class of edges that covers all the vertices of G. This theorem yields immediately an O(n3) decomposition algorithm.  相似文献   

12.
For a connected finite graph G and a subset V0 of its vertex set, a distance-residual subgraph is a subgraph induced on the set of vertices at the maximal distance from V0. Some properties and examples of distance-residual subgraphs of vertex-transitive, edge-transitive, bipartite and semisymmetric graphs are presented. The relations between the distance-residual subgraphs of product graphs and their factors are explored.  相似文献   

13.
We define a completion of a netlike partial cube G by replacing each convex 2n-cycle C of G with n≥3 by an n-cube admitting C as an isometric cycle. We prove that a completion of G is a median graph if and only if G has the Median Cycle Property (MCP) (see N. Polat, Netlike partial cubes III. The Median Cycle Property, Discrete Math.). In fact any completion of a netlike partial cube having the MCP is defined by a universal property and turns out to be a minimal median graph containing G as an isometric subgraph. We show that the completions of the netlike partial cubes having the MCP preserves the principal constructions of these graphs, such as: netlike subgraphs, gated amalgams and expansions. Conversely any netlike partial cube having the MCP can be obtained from a median graph by deleting some particular maximal finite hypercubes. We also show that, given a netlike partial cube G having the MCP, the class of all netlike partial cubes having the MCP whose completions are isomorphic to those of G share different properties, such as: depth, lattice dimension, semicube graph and crossing graph.  相似文献   

14.
At the 4th International Graph Theory Conference 1980, G. Chartrand posed the following problem: If a (connected) graph G contains spanning trees with m and n pendant vertices, respectively, with m < n, does G contain a spanning tree with k pendant vertices for every integer k, where m < k < n? Recently, S. Schuster showed that the answer is yes. Several variations of this interpolation theorem will be given including the following generalization: If a connected graph G contains connected spanning subgraphs of size r with m and n pendant vertices, respectively, with m < n, then G contains a connected spanning subgraph of size r with k pendant vertices for every integer k, where m < k < n.  相似文献   

15.
A graph is clique-perfect if the cardinality of a maximum clique-independent set equals the cardinality of a minimum clique-transversal, for all its induced subgraphs. A graph G is coordinated if the chromatic number of the clique graph of H equals the maximum number of cliques of H with a common vertex, for every induced subgraph H of G. Coordinated graphs are a subclass of perfect graphs. The complete lists of minimal forbidden induced subgraphs for the classes of cliqueperfect and coordinated graphs are not known, but some partial characterizations have been obtained. In this paper, we characterize clique-perfect and coordinated graphs by minimal forbidden induced subgraphs when the graph is either paw-free or {gem,W4,bull}-free, two superclasses of triangle-free graphs.  相似文献   

16.
A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. The clique-transversal number and clique-independence number of G are the sizes of a minimum clique-transversal and a maximum clique-independent set of G, respectively. A graph G is clique-perfect if these two numbers are equal for every induced subgraph of G. The list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is not known. In this paper, we present a partial result in this direction; that is, we characterize clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph belongs to two different subclasses of claw-free graphs.  相似文献   

17.
A graph is well covered if every maximal independent set has the same cardinality. A vertex x, in a well-covered graph G, is called extendable if G – {x} is well covered and β(G) = β(G – {x}). If G is a connected, well-covered graph containing no 4- nor 5-cycles as subgraphs and G contains an extendable vertex, then G is the disjoint union of edges and triangles together with a restricted set of edges joining extendable vertices. There are only 3 other connected, well-covered graphs of this type that do not contain an extendable vertex. Moreover, all these graphs can be recognized in polynomial time.  相似文献   

18.
The Steiner distance of a set S of vertices in a connected graph G is the minimum size among all connected subgraphs of G containing S. For n ≥ 2, the n-eccentricity en(ν) of a vertex ν of a graph G is the maximum Steiner distance among all sets S of n vertices of G that contains ν. The n-diameter of G is the maximum n-eccentricity among the vertices of G while the n-radius of G is the minimum n-eccentricity. The n-center of G is the subgraph induced by those vertices of G having minimum n-eccentricity. It is shown that every graph is the n-center of some graph. Several results on the n-center of a tree are established. In particular, it is shown that the n-center of a tree is a tree and those trees that are n-centers of trees are characterized.  相似文献   

19.
For a subset W of vertices of an undirected graph G, let S(W) be the subgraph consisting of W, all edges incident to at least one vertex in W, and all vertices adjacent to at least one vertex in W. If S(W) is a tree containing all the vertices of G, then we call it a spanning star tree of G. In this case W forms a weakly connected but strongly acyclic dominating set for G. We prove that for every r ≥ 3, there exist r-regular n-vertex graphs that have spanning star trees, and there exist r-regular n-vertex graphs that do not have spanning star trees, for all n sufficiently large (in terms of r). Furthermore, the problem of determining whether a given regular graph has a spanning star tree is NP-complete.  相似文献   

20.
A matroidal family is a nonempty set ? of connected finite graphs such that for every arbitrary finite graph G the edge sets of the subgraphs of G which are isomorphic to an element of ? form a matroid on the edge set of G. In the present paper the question whether there are any matroidal families besides the four previously described by Simões-Pereira is answered affirmatively. It is shown that for every natural number n ? 2 there is a matroidal family that contains the complete graph with n vertices. For n = 4 this settles Simões-Pereira's conjecture that there is a matroidal family containing all wheels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号