首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
In this paper we investigate symmetry results for positive solutions of systems involving the fractional Laplacian (1) $\left\{ \begin{gathered} ( - \Delta )^{\alpha _1 } u_1 (x) = f_1 (u_2 (x)),x \in \mathbb{R}^\mathbb{N} , \hfill \\ ( - \Delta )^{\alpha _2 } u_2 (x) = f_2 (u_1 (x)),x \in \mathbb{R}^\mathbb{N} , \hfill \\ \lim _{|x| \to \infty } u_1 (x) = \lim _{|x| \to \infty } u_2 (x) = 0 \hfill \\ \end{gathered} \right. $ where N ≥ 2 and α 1, α 2 ∈ (0, 1). We prove symmetry properties by the method of moving planes.  相似文献   

2.
In this article we study various convergence results for a class of nonlinear fractional heat equations of the form $\left\{ \begin{gathered} u_t (t,x) - \mathcal{I}[u(t, \cdot )](x) = f(t,x),(t,x) \in (0,T) \times \mathbb{R}^n , \hfill \\ u(0,x) = u_0 (x),x \in \mathbb{R}^n , \hfill \\ \end{gathered} \right.$ where I is a nonlocal nonlinear operator of Isaacs type. Our aim is to study the convergence of solutions when the order of the operator changes in various ways. In particular, we consider zero order operators approaching fractional operators through scaling and fractional operators of decreasing order approaching zero order operators. We further give rate of convergence in cases when the solution of the limiting equation has appropriate regularity assumptions.  相似文献   

3.
Rudykh  G. A.  Semenov  É. I. 《Mathematical Notes》2001,70(5-6):714-719
In this paper, we obtain new exact non-self-similar solutions of the nonlinear diffusion equation $$\begin{gathered} {\text{ }}u_t = \Delta \ln u, \hfill \\ u \triangleq u\left( {x,t} \right):\Omega \times \mathbb{R}^ + \to \mathbb{R},{\text{ }} x \in \mathbb{R}^n , \hfill \\ \end{gathered} $$ where $\Omega \subset \mathbb{R}^n $ is the domain and $\mathbb{R}^ + = \left\{ {t:0 \leqslant t < + \infty } \right\},{\text{ }}u\left( {x,t} \right) \geqslant 0$ is the temperature of the medium.  相似文献   

4.
This paper is concerned with the heat equation in the half-space ? + N with the singular potential function on the boundary, (P) $\left\{ \begin{gathered} \frac{\partial } {{\partial t}}u - \Delta u = 0\operatorname{in} \mathbb{R}_ + ^N \times (0,T), \hfill \\ \frac{\partial } {{\partial x_N }}u + \frac{\omega } {{|x|}}u = 0on\partial \mathbb{R}_ + ^N \times (0,T), \hfill \\ u(x,0) = u_0 (x) \geqslant ()0in\mathbb{R}_ + ^N , \hfill \\ \end{gathered} \right. $ where N ?? 3, ?? > 0, 0 < T ?? ??, and u 0 ?? C 0(? + N ). We prove the existence of a threshold number ?? N for the existence and the nonexistence of positive solutions of (P), which is characterized as the best constant of the Kato inequality in ? + N .  相似文献   

5.
We consider the three dimensional Cauchy problem for the Laplace equation uxx(x,y,z)+ uyy(x,y,z)+ uzz(x,y,z) = 0, x ∈ R,y ∈ R,0 z ≤ 1, u(x,y,0) = g(x,y), x ∈ R,y ∈ R, uz(x,y,0) = 0, x ∈ R,y ∈ R, where the data is given at z = 0 and a solution is sought in the region x,y ∈ R,0 z 1. The problem is ill-posed, the solution (if it exists) doesn't depend continuously on the initial data. Using Galerkin method and Meyer wavelets, we get the uniform stable wavelet approximate solution. Furthermore, we shall give a recipe for choosing the coarse level resolution.  相似文献   

6.
It is shown that any solution to the semilinear problem{ ut = uxx + δ(1-u)-p , (x, t) ∈ (-1 , 1) × (0 , T ), u( ±1 , t) = 0, t ∈ (0 , T ), u(x, 0) = u0(x) 1, x ∈ [ 1 , 1] either touches 1 in finite time or converges smoothly to a steady state as t →∞. Some extensions of this result to higher dimensions are also discussed.  相似文献   

7.
A system of nonlinear Schrödinger equations $\begin{gathered} \frac{{\partial u_k }}{{\partial t}} = ia_k \Delta u_k + f_k (u,u^* ), t > 0, k = 1,...,m, \hfill \\ u_k (0,x) = u_{k0} (x), k = 1,...,m, x \in R^n . \hfill \\ \end{gathered} $ is investigated. Conditions that assure the globality of a solution are found.  相似文献   

8.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

9.
Present investigation analyses the Ljapunov stability of the systems of ordinary differential equations arising in then-th step of the Faedo-Galerkin approximation for the nonlinear wave-equation $$\begin{gathered} u_{tt} - u_{xx} + M(u) = 0 \hfill \\ u(0,t) = u(1,t) = 0 \hfill \\ u(x,0) = \Phi (x); u_t (x,0) = \Psi (x). \hfill \\ \end{gathered}$$ For the nonlinearities of the classM (u)=u 2 p+1 ,pN, ann-independent stability result is given. Thus also the stability of the original equation is shown.  相似文献   

10.
We study the initial boundary value problem for the nonlinear wave equation: (*) $$\left\{ \begin{gathered} \partial _t^2 u - (\partial _r^2 + \frac{{n - 1}}{r}\partial _r )u = F(\partial _t u,\partial _t^2 u),t \in \mathbb{R}^ + ,R< r< \infty , \hfill \\ u(0,r) = \in _0 u_0 (r),\partial _t u(0,r) = \in _0 u_1 (r),R< r< \infty , \hfill \\ u(t,R) = 0,t \in \mathbb{R}^ + , \hfill \\ \end{gathered} \right.$$ wheren=4,5,u 0,u 1 are real valued functions and ∈0 is a sufficiently small positive constant. In this paper we shall show small solutions to (*) exist globally in time under the condition that the nonlinear termF:?2→? is quadratic with respect to ? t u and ? t 2 u.  相似文献   

11.
We consider the control processes $$\begin{gathered} (E) z_{xy} + A(x,y)z_x + B(x,y)z_y + C(x,y)z = F(x,y)U(x,y) \hfill \\ q.o. in R = [0,\alpha [ \times [0,\beta [, \hfill \\ \end{gathered} $$ $$\begin{gathered} (\tilde E) z_{xy} + \bar A(x,y)z_x + \bar B(x,y)z_y + \bar C(x,y)z = \bar F(x,y)U(x,y) \hfill \\ q.o. in R \hfill \\ \end{gathered} $$ We show that under appropriate assumptions on the dataA, B, C, F, if the process (E) is completely controllable, then the perturbed process (ē) is completely controllable too. The result is obteined proving for the evolution matrixV, a continuous dependence on the coefficientsA, B, C.  相似文献   

12.
Consider the following Bolza problem: $$\begin{gathered} \min \int {h(x,u) dt,} \hfill \\ \dot x = F(x) + uG(x), \hfill \\ \left| u \right| \leqslant 1, x \in \Omega \subset \mathbb{R}^2 , \hfill \\ x(0) = x_0 , x(1) = x_1 . \hfill \\ \end{gathered} $$ We show that, under suitable assumptions onF, G, h, all optimal trajectories are bang-bang. The proof relies on a geometrical approach that works for every smooth two-dimensional manifold. As a corollary, we obtain existence results for nonconvex optimization problems.  相似文献   

13.
We study nonnegative solutions of the initial value problem for a weakly coupled system
  相似文献   

14.
A thorough investigation of the systemd~2y(x):dx~2 p(x)y(x)=0with periodic impulse coefficientsp(x)={1,0≤xx_0>0) -η, x_0≤x<2π(η>0)p(x)=p(x 2π),-∞相似文献   

15.
This article provides an asymptotic formula for the number of integer points in the three-dimensional body $$ \left( \begin{gathered} x \hfill \\ y \hfill \\ z \hfill \\ \end{gathered} \right) = t\left( \begin{gathered} (a + r\cos \alpha )\cos \beta \hfill \\ (a + r\cos \alpha )\sin \beta \hfill \\ r\sin \alpha \hfill \\ \end{gathered} \right),0 \leqq \alpha ,\beta < 2\pi ,0 \leqq r \leqq b, $$ for fixed a > b > 0 and large t.  相似文献   

16.
This paper is concerned with the Cauchy problem for the nonlinear parabolic equation $${\partial _t}u| = \vartriangle u + F(x,t,u,\nabla u){\text{ in }}{{\text{R}}^N} \times (0,\infty ),{\text{ }}u(x,0) = \varphi (x){\text{ in }}{{\text{R}}^N},$$ , where $$\begin{gathered} N \geqslant 1, \hfill \\ F \in C(R^N \times (0,\infty ) \times R \times R^N ), \hfill \\ \phi \in L^\infty (R^N ) \cap L^1 (R^N ,(1 + |x|^K )dx)forsomeK \geqslant 0 \hfill \\ \end{gathered} $$ . We give a sufficient condition for the solution to behave like a multiple of the Gauss kernel as t → ∞ and obtain the higher order asymptotic expansions of the solution in W 1,q (R N ) with 1 ≤ q ≤ ∞.  相似文献   

17.
Consider minimizing the integral $$I = \int_0^T {[\dot w^2 + g(y)w^2 ] dy}$$ where $$w = w(y), \dot w = dw/dy, w(T) = 1, w(0) = free$$ ForT sufficiently small, it is shown that $$w_{opt} = x(t,T), 0 \leqslant t \leqslant T$$ where the functionx, viewed as a function ofT, is a solution of the Cauchy problem $$\begin{gathered} x_T (t,T) = r(T)x(t,T), T \geqslant t \hfill \\ x(t,t) = 1 \hfill \\\end{gathered}$$ and the auxiliary functionr satisfies the Riccati system $$\begin{gathered} r_T = ---g(T) + r^2 , T \geqslant 0 \hfill \\ r(0) = 0 \hfill \\\end{gathered}$$ In the derivation of the Cauchy problem, no use is made of Euler equations, dynamic programming, or Pontryagin's maximum principle. Only ordinary differential equations are employed. The Cauchy problem provides a one-sweep integration procedure; it is intimately connected with the theory of the second variation.  相似文献   

18.
Continuous dependence for integrodifferential equation with infinite delay $$\begin{gathered} \dot x = h(t,x) + \int_{ \sim \infty }^t {q(t,s,x(s))ds} + F(t,x(t),Sx(t))t \geqslant 0 \hfill \\ x(t) = \Phi (t) \hfill \\ \end{gathered} $$ where \(Sx(t) = \int_{ \sim \infty }^t {k(t,s,x(s))} ds\) is studied under the assumption of existence of unique solution.  相似文献   

19.
modm. Ifm is natural,a an integer with (a, m)=1 put $$\begin{gathered} {}^om(a): = min\{ h\left| {h \in \mathbb{N},} \right.a^h \equiv 1(modm)\} , \hfill \\ \psi (m): = \max \{ o_m (a)\left| a \right. \in \mathbb{Z},(a,m) = 1\} , \hfill \\ g(m): = \min \{ a\left| {a \in \mathbb{N},(a,m) = 1,o_m (a) = } \right.\psi (m)\} . \hfill \\ \end{gathered} $$ Form prime,g(m) is the least natural primitive root modm. We establish the estimation $$\sum\limits_{m< x} {g(m)<< x^{1 + \varepsilon } .} $$   相似文献   

20.
We consider a class of planar self-affine tiles T = M-1 a∈D(T + a) generated by an expanding integral matrix M and a collinear digit set D as follows:M =(0-B 1-A),D = {(00),...,(|B|0-1)}.We give a parametrization S1 →T of the boundary of T with the following standard properties.It is H¨older continuous and associated with a sequence of simple closed polygonal approximations whose vertices lie on T and have algebraic preimages.We derive a new proof that T is homeomorphic to a disk if and only if 2|A| |B + 2|.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号