首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem of robust decentralized adaptive synchronization of general complex networks with coupling delayed and uncertainties is investigated in this article. It is only assumed that the upper normal bound of uncertain inner and outer coupling matrices is positive but its concrete structure is not also required to be known. The time‐varying coupling delay is a any nonnegative continuous and bounded function and not require its derivative to be less than one, that is, general time‐varying coupling delays and uncertainties. For such a class of uncertain complex networks, a new synchronization scheme is presented by a class of continuous memoryless robust decentralized adaptive synchronization controllers. It is also shown that the synchronization error dynamics of uncertain complex networks can be guaranteed as uniformly exponentially convergent toward a ball that can be as small as desired. Finally, numerical simulations are provided to demonstrate the effectiveness and robustness of proposed complex networks synchronization schemes. © 2013 Wiley Periodicals, Inc. Complexity 19: 10–26, 2014  相似文献   

2.
This article focuses on the problem of Guaranteed cost synchronization of complex networks with uncertainties and time‐Varying delays. Sufficient conditions for the existence of the optimal guaranteed cost control laws are introduced in the light of linear matrix inequalities via the Lyapunov–Krasovskii stability theory. The time‐varying node delays and time‐varying coupling delays are simultaneously regarded in the complex network. The node uncertainties and coupling uncertainties are simultaneously considered as well. Numerical simulations are provided to account for the effectiveness and robustness of the proposed method. The results in this article generalize and improve the corresponding results of the recent works. © 2015 Wiley Periodicals, Inc. Complexity 21: 381–395, 2016  相似文献   

3.
This paper investigates the trajectory tracking control of the networked multimanipulator with the existence of time‐varying delays and uncertainties in both kinematics and dynamics. To address time‐varying delays in the communication links, a novel control scheme is established by the design of delay–rate‐dependent networking mutual coupling strengths. Besides, to handle the kinematic and dynamic uncertainties, an adaptive controller is designed. The proposed control scheme guarantees that the networked robotic system can track a commonly desired trajectory cooperatively with the strongly connected communication graph, uncertainties, and time‐varying communicating delays. A Lyapunov–Krasovskii functional is employed to rigorously prove the asymptotic convergence of both tracking errors and synchronization errors. The simulation results are provided to verify the effectiveness of the control method proposed by this paper.  相似文献   

4.
Synchronization of complex networks with time‐varying coupling matrices is studied in this paper. Two kinds of time‐varying coupling are taken into account. One is the time‐varying inner coupling in the node state space and the other is the time‐varying outer coupling in the network topology space. By respectively setting linear controllers and adaptive controllers, time‐varying complex networks can be synchronized to a desired state. Meanwhile, different influences of the control parameters of linear controllers and adaptive controllers on the synchronization have also been investigated. Based on the Lyapunov function theory, we construct appropriate positive‐definite functions, and several sufficient synchronization criteria are obtained. Numerical simulations further illustrate the effectiveness of conclusions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, simple controllers are designed to realize the synchronization of complex networks with time delays, in which the coupling configuration matrix and inner coupling matrix are not restricted to be symmetric matrix. Several adaptive synchronization criteria are obtained based on Lyapunov stability theory. These criteria relay on the coupling strength and the number of nodes pinning to the networks. For a given complex dynamical network with both delayed and non-delayed couplings, we give the minimum number of controllers under which synchronization can be achieved. One example shows the effectiveness of the proposed pinning adaptive controller.  相似文献   

6.
This article is concerned with the problem of pinning outer synchronization between two complex delayed dynamical networks via adaptive intermittent control. At first, a general model of hybrid‐coupled dynamical network with time‐varying internal delay and time‐varying coupling delay is given. Then, an aperiodically adaptive intermittent pinning‐control strategy is introduced to drive two such delayed dynamical networks to achieve outer synchronization. Some sufficient conditions to guarantee global outer‐synchronization are derived by constructing a novel piecewise Lyapunov function and utilizing stability analytical method. Moreover, a simple pinned‐node selection scheme determining what kinds of nodes should be pinned first is provided. It is noted that the adaptive pinning control type is aperiodically intermittent, where both control period and control width are non‐fixed. Finally, a numerical example is given to illustrate the validity of the theoretical results. © 2016 Wiley Periodicals, Inc. Complexity 21: 593–605, 2016  相似文献   

7.
In this paper, on the basis of the Lyapunov stability theory and finite‐time stability lemma, the finite‐time synchronization problem for memristive neural networks with time‐varying delays is studied by two control methods. First, the discontinuous state‐feedback control rule containing integral part for square sum of the synchronization error and the discontinuous adaptive control rule are designed for realizing synchronization of drive‐response memristive neural networks in finite time, respectively. Then, by using some important inequalities and defining suitable Lyapunov functions, some algebraic sufficient criteria guaranteeing finite‐time synchronization are deduced for drive‐response memristive neural networks in finite time. Furthermore, we give the estimation of the upper bounds of the settling time of finite‐time synchronization. Lastly, the effectiveness of the obtained sufficient criteria guaranteeing finite‐time synchronization is validated by simulation.  相似文献   

8.
The synchronization problem for both continuous and discrete‐time complex dynamical networks with time‐varying delays is investigated. Using optimal partitioning method, time‐varying delays are partitioned into l subintervals and generalized results are derived in terms of linear matrix inequalities (LMIs). New delay‐dependent synchronization criteria in terms of LMIs are derived by constructing appropriate Lyapunov–Krasovskii functional, reciprocally convex combination technique and some inequality techniques. Numerical examples are given to illustrate the effectiveness and advantage of the proposed synchronization criteria. © 2014 Wiley Periodicals, Inc. Complexity 21: 193–210, 2015  相似文献   

9.
This article proposes a novel adaptive sliding mode control (SMC) scheme to realize the problem of robust tracking and model following for a class of uncertain time‐delay systems with input nonlinearity. It is shown that the proposed robust tracking controller guarantees the stability of overall closed‐loop system and achieves zero‐tracking error in the presence of input nonlinearity, time‐delays, time‐varying parameter uncertainties and external disturbances. The selection of sliding surface and the existence of sliding mode are two important issues, which have been addressed. This scheme assures robustness against input nonlinearity, time‐delays, parameter uncertainties, and external disturbances. Moreover, the knowledge of the upper bound of uncertainties is not required and chattering phenomenon is eliminated. Both theoretical analysis and illustrative examples demonstrate the validity of the proposed scheme. © 2014 Wiley Periodicals, Inc. Complexity 21: 66–73, 2015  相似文献   

10.
In this paper, we have studied time delay- and coupling strength-induced synchronization transitions in scale-free modified Hodgkin–Huxley (MHH) neuron networks with gap-junctions and chemical synaptic coupling. It is shown that the synchronization transitions are much different for these two coupling types. For gap-junctions, the neurons exhibit a single synchronization transition with time delay and coupling strength, while for chemical synapses, there are multiple synchronization transitions with time delay, and the synchronization transition with coupling strength is dependent on the time delay lengths. For short delays we observe a single synchronization transition, whereas for long delays the neurons exhibit multiple synchronization transitions as the coupling strength is varied. These results show that gap junctions and chemical synapses have different impacts on the pattern formation and synchronization transitions of the scale-free MHH neuronal networks, and chemical synapses, compared to gap junctions, may play a dominant and more active function in the firing activity of the networks. These findings would be helpful for further understanding the roles of gap junctions and chemical synapses in the firing dynamics of neuronal networks.  相似文献   

11.
This paper investigates the problem of two stochastic complex networks synchronize to the limit set with adaptive controller and adaptive delay, which are not fully considered in the existing research. A few articles on stability of stochastic complex networks with time‐varying delay is discussed, but the time‐varying delayed and its derivative are bounded on time t. In this paper, the time‐varying delay is adaptive. Also, the coupling matrix with stochastic perturbation is also considered. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The study investigates robust synchronization of fractional-order complex dynamical networks with parametric uncertainties. Based on the properties of the kronecker product and the stability of the fractional-order system, the robust synchronization criteria are derived by applying the nonlinear control. These criteria are in the form of linear matrix inequalities which can be readily solved by applying the LMI toolbox. The coupling configuration matrix is not necessary to be symmetric or irreducible, and the inner coupling matrix needs not to be symmetric, diagonal or positive definite. Two numerical examples are provided to demonstrate the validity of the presented synchronization scheme.  相似文献   

13.
In this article, cluster synchronization problem for Lur'e type Takagi–Sugeno (T–S) fuzzy complex networks with probabilistic time‐varying delays is considered. Pinning control strategy is proposed. The probability distribution of the time‐varying delay is considered. In terms of the probability distribution of the delays, a new type of system model with probability‐distribution‐dependent parameter matrices is proposed. Moreover, probabilistic delay is assumed to satisfy certain probability distribution and the probability of the delay takes values in some intervals. By constructing a suitable Lyapunov–Krasovskii functional involving triple integral terms and using Kronecker product with convex combination technique, some sufficient conditions are derived to ensure the cluster synchronization of designed networks such that the linear feedback controller can be used to every cluster. The problem of controller design is converted into solving a series of linear matrix inequalities. The effectiveness of our results is verified through numerical examples and simulations. © 2014 Wiley Periodicals, Inc. Complexity 21: 59–77, 2015  相似文献   

14.
In this article, a synchronization problem for complex dynamical networks with additive time‐varying coupling delays via non‐fragile control is investigated. A new class of Lyapunov–Krasovskii functional with triple integral terms is constructed and using reciprocally convex approach, some new delay‐dependent synchronization criteria are derived in terms of linear matrix inequalities (LMIs). When applying Jensen's inequality to partition double integral terms in the derivation of LMI conditions, a new kind of linear combination of positive functions weighted by the inverses of squared convex parameters appears. To handle such a combination, an effective method is introduced by extending the lower bound lemma. Then, a sufficient condition for designing the non‐fragile synchronization controller is introduced. Finally, a numerical example is given to show the advantages of the proposed techniques. © 2014 Wiley Periodicals, Inc. Complexity 21: 296–321, 2015  相似文献   

15.
This study deals with the pinning synchronization problem for complex dynamical networks (CDNs) with Markovian jumping parameters and mixed delays under sampled‐data control technique. The mixed delays cover both discrete and distributed delays. The Markovian jumping parameters are modeled as a continuous‐time, finite‐state Markov chain. The sufficient conditions for asymptotic synchronization of considered networks are obtained by utilizing novel Lyapunov‐Krasovskii functional and multiple integral approach. The obtained criteria is formulated in terms of LMIs, which can be checked for feasibility by making use of available softwares. Lastly, numerical simulation results are presented to validate the advantage of the propound theoretical results. © 2016 Wiley Periodicals, Inc. Complexity 21: 622–632, 2016  相似文献   

16.
In this paper, we study the effect of time delay on the firing behavior and temporal coherence and synchronization in Newman–Watts thermosensitive neuron networks with adaptive coupling. At beginning, the firing exhibit disordered spiking in absence of time delay. As time delay is increased, the neurons exhibit diversity of firing behaviors including bursting with multiple spikes in a burst, spiking, bursting with four, three and two spikes, firing death, and bursting with increasing amplitude. The spiking is the most ordered, exhibiting coherence resonance (CR)-like behavior, and the firing synchronization becomes enhanced with the increase of time delay. As growth rate of coupling strength or network randomness increases, CR-like behavior shifts to smaller time delay and the synchronization of firing increases. These results show that time delay can induce diversity of firing behaviors in adaptive neuronal networks, and can order the chaotic firing by enhancing and optimizing the temporal coherence and enhancing the synchronization of firing. However, the phenomenon of firing death shows that time delay may inhibit the firing of adaptive neuronal networks. These findings provide new insight into the role of time delay in the firing activity of adaptive neuronal networks, and can help to better understand the complex firing phenomena in neural networks.  相似文献   

17.
This paper is concerned with the pinning control of the robust synchronization of a class of nonlinearly coupled complex networks through adaptive techniques. The effect of perturbed couplings is addressed by adaptive compensation and adjustment methods with controllers and coupling strength designs, respectively. For the pinned nodes, a controller gain function is proposed to compensate the nonlinearities based on adaptive estimations of controller parameters on-line; while for the un-pinned nodes, adaptive adjustment laws are addressed to adjust unknown coupling factors to restrain the unexpected action of the nonlinearly coupled networks. On the basis of Lyapunov stability theory, adaptive pinning controllers and coupling strength adjusters are constructed to ensure that the synchronization errors of the networks can be reduced as small as desired in the presence of the nonlinear couplings. A numerical simulation is provided to illustrate the effectiveness of the theoretical results.  相似文献   

18.
In this article, the mean square exponential synchronization of a class of impulsive coupled neural networks with time‐varying delays and stochastic disturbances is investigated. The information transmission among the systems can be directed and lagged, that is, the coupling matrices are not needed to be symmetrical and there exist interconnection delays. The dynamical behaviors of the networks can be both continuous and discrete. Specially, the time‐varying delays are taken into consideration to describe the impulsive effects of the system. The control objective is that the trajectories of the salve system by designing suitable control schemes track the trajectories of the master system with impulsive effects. Consequently, sufficient criteria for guaranteeing the mean square exponential convergence of the two systems are obtained in view of Lyapunov stability theory, comparison principle, and mathematical induction. Finally, a numerical simulation is presented to show the verification of the main results in this article. © 2015 Wiley Periodicals, Inc. Complexity 21: 190–202, 2016  相似文献   

19.
This paper presents a general model of singular complex switched networks, in which the nodes can be singular dynamic systems and switching behaviors act on both nodes and edges. The parametric uncertainties and unknown coupling topologies are also considered in this model. Two robust synchronization schemes are discussed respectively. In one scheme, the network is synchronized to a homogeneous orbit and in the other one the network is synchronized to a weighted average of all the nodes. Based on the Lyapunov stability theory, different robust synchronization conditions for the two schemes are obtained for this singular complex switched network model via impulsive control. The similarities and differences between these synchronization conditions for the two schemes are discussed. In addition, three useful robust results for the special cases of the singular complex switched networks are presented. Two systematic-design procedures are presented for the two schemes, and three numerical examples are provided for illustrations.  相似文献   

20.
This paper presents a general impulsively-coupled complex switched network (ICCSN) model with parametric uncertainties and multiple Time-varying Delays in both the linear and nonlinear terms. The model is more general than those in the literature in that it contains switching behaviors on nodes and impulsive effects in the whole topology. Robust synchronization of ICCSNs with parametric uncertainties and time-varying delays is investigated. Based on the Lyapunov stability theory, delay-independent synchronization conditions for ICCSNs with uncertainties and delays are obtained. In addition, we consider five special synchronization cases: ICCSNs with delays in both the linear and nonlinear terms, ICCSNs with parametric uncertainties and delays either in the linear or in the nonlinear term, ICCSNs without switching behaviors but with parametric uncertainties and delays, and impulsively-switched-coupled complex switched network with uncertainties and delays. A systematic-design procedure is presented, and a numerical example is carried out to demonstrate the effectiveness of the proposed synchronization strategy. A comparative study of the maximum impulsive intervals for synchronization is presented for all special cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号