首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
In (Andrei, Comput. Optim. Appl. 38:402?C416, 2007), the efficient scaled conjugate gradient algorithm SCALCG is proposed for solving unconstrained optimization problems. However, due to a wrong inequality used in (Andrei, Comput. Optim. Appl. 38:402?C416, 2007) to show the sufficient descent property for the search directions of SCALCG, the proof of Theorem?2, the global convergence theorem of SCALCG, is incorrect. Here, in order to complete the proof of Theorem?2 in (Andrei, Comput. Optim. Appl. 38:402?C416, 2007), we show that the search directions of SCALCG satisfy the sufficient descent condition. It is remarkable that the convergence analyses in (Andrei, Optim. Methods Softw. 22:561?C571, 2007; Eur. J. Oper. Res. 204:410?C420, 2010) should be revised similarly.  相似文献   

2.
This letter presents a scaled memoryless BFGS preconditioned conjugate gradient algorithm for solving unconstrained optimization problems. The basic idea is to combine the scaled memoryless BFGS method and the preconditioning technique in the frame of the conjugate gradient method. The preconditioner, which is also a scaled memoryless BFGS matrix, is reset when the Powell restart criterion holds. The parameter scaling the gradient is selected as the spectral gradient. Computational results for a set consisting of 750 test unconstrained optimization problems show that this new scaled conjugate gradient algorithm substantially outperforms known conjugate gradient methods such as the spectral conjugate gradient SCG of Birgin and Martínez [E. Birgin, J.M. Martínez, A spectral conjugate gradient method for unconstrained optimization, Appl. Math. Optim. 43 (2001) 117–128] and the (classical) conjugate gradient of Polak and Ribière [E. Polak, G. Ribière, Note sur la convergence de méthodes de directions conjuguées, Revue Francaise Informat. Reserche Opérationnelle, 3e Année 16 (1969) 35–43], but subject to the CPU time metric it is outperformed by L-BFGS [D. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization, Math. Program. B 45 (1989) 503–528; J. Nocedal. http://www.ece.northwestern.edu/~nocedal/lbfgs.html].  相似文献   

3.
In order to propose a scaled conjugate gradient method, the memoryless BFGS preconditioned conjugate gradient method suggested by Shanno and the spectral conjugate gradient method suggested by Birgin and Martínez are hybridized following Andrei’s approach. Since the proposed method is designed based on a revised form of a modified secant equation suggested by Zhang et al., one of its interesting features is applying the available function values in addition to the gradient values. It is shown that, for the uniformly convex objective functions, search directions of the method fulfill the sufficient descent condition which leads to the global convergence. Numerical comparisons of the implementations of the method and an efficient scaled conjugate gradient method proposed by Andrei, made on a set of unconstrained optimization test problems of the CUTEr collection, show the efficiency of the proposed modified scaled conjugate gradient method in the sense of the performance profile introduced by Dolan and Moré.  相似文献   

4.
Conjugate gradient methods are appealing for large scale nonlinear optimization problems, because they avoid the storage of matrices. Recently, seeking fast convergence of these methods, Dai and Liao (Appl. Math. Optim. 43:87–101, 2001) proposed a conjugate gradient method based on the secant condition of quasi-Newton methods, and later Yabe and Takano (Comput. Optim. Appl. 28:203–225, 2004) proposed another conjugate gradient method based on the modified secant condition. In this paper, we make use of a multi-step secant condition given by Ford and Moghrabi (Optim. Methods Softw. 2:357–370, 1993; J. Comput. Appl. Math. 50:305–323, 1994) and propose two new conjugate gradient methods based on this condition. The methods are shown to be globally convergent under certain assumptions. Numerical results are reported.  相似文献   

5.
In this paper, we propose a three-term conjugate gradient method based on secant conditions for unconstrained optimization problems. Specifically, we apply the idea of Dai and Liao (in Appl. Math. Optim. 43: 87–101, 2001) to the three-term conjugate gradient method proposed by Narushima et al. (in SIAM J. Optim. 21: 212–230, 2011). Moreover, we derive a special-purpose three-term conjugate gradient method for a problem, whose objective function has a special structure, and apply it to nonlinear least squares problems. We prove the global convergence properties of the proposed methods. Finally, some numerical results are given to show the performance of our methods.  相似文献   

6.
An Adaptive Regularisation algorithm using Cubics (ARC) is proposed for unconstrained optimization, generalizing at the same time an unpublished method due to Griewank (Technical Report NA/12, 1981, DAMTP, University of Cambridge), an algorithm by Nesterov and Polyak (Math Program 108(1):177–205, 2006) and a proposal by Weiser et al. (Optim Methods Softw 22(3):413–431, 2007). At each iteration of our approach, an approximate global minimizer of a local cubic regularisation of the objective function is determined, and this ensures a significant improvement in the objective so long as the Hessian of the objective is locally Lipschitz continuous. The new method uses an adaptive estimation of the local Lipschitz constant and approximations to the global model-minimizer which remain computationally-viable even for large-scale problems. We show that the excellent global and local convergence properties obtained by Nesterov and Polyak are retained, and sometimes extended to a wider class of problems, by our ARC approach. Preliminary numerical experiments with small-scale test problems from the CUTEr set show encouraging performance of the ARC algorithm when compared to a basic trust-region implementation.  相似文献   

7.
《Optimization》2012,61(4):549-570
The best spectral conjugate gradient algorithm by (Birgin, E. and Martínez, J.M., 2001, A spectral conjugate gradient method for unconstrained optimization. Applied Mathematics and Optimization, 43, 117–128). which is mainly a scaled variant of (Perry, J.M., 1977, A class of Conjugate gradient algorithms with a two step varaiable metric memory, Discussion Paper 269, Center for Mathematical Studies in Economics and Management Science, Northwestern University), is modified in such a way as to overcome the lack of positive definiteness of the matrix defining the search direction. This modification is based on the quasi-Newton BFGS updating formula. The computational scheme is embedded into the restart philosophy of Beale–Powell. The parameter scaling the gradient is selected as spectral gradient or in an anticipative way by means of a formula using the function values in two successive points. In very mild conditions it is shown that, for strongly convex functions, the algorithm is global convergent. Computational results and performance profiles for a set consisting of 700 unconstrained optimization problems show that this new scaled nonlinear conjugate gradient algorithm substantially outperforms known conjugate gradient methods including: the spectral conjugate gradient SCG by Birgin and Martínez, the scaled Fletcher and Reeves, the Polak and Ribière algorithms and the CONMIN by (Shanno, D.F. and Phua, K.H., 1976, Algorithm 500, Minimization of unconstrained multivariate functions. ACM Transactions on Mathematical Software, 2, 87–94).  相似文献   

8.
A new nonmonotone algorithm is proposed and analyzed for unconstrained nonlinear optimization. The nonmonotone techniques applied in this algorithm are based on the estimate sequence proposed by Nesterov (Introductory Lectures on Convex Optimization: A Basic Course, 2004) for convex optimization. Under proper assumptions, global convergence of this algorithm is established for minimizing general nonlinear objective function with Lipschitz continuous derivatives. For convex objective function, this algorithm maintains the optimal convergence rate of convex optimization. In numerical experiments, this algorithm is specified by employing safe-guarded nonlinear conjugate gradient search directions. Numerical results show the nonmonotone algorithm performs significantly better than the corresponding monotone algorithm for solving the unconstrained optimization problems in the CUTEr (Bongartz et al. in ACM Trans. Math. Softw. 21:123–160, 1995) library.  相似文献   

9.
A new diagonal quasi-Newton updating algorithm for unconstrained optimization is presented. The elements of the diagonal matrix approximating the Hessian are determined as scaled forward finite differences directional derivatives of the components of the gradient. Under mild classical assumptions, the convergence of the algorithm is proved to be linear. Numerical experiments with 80 unconstrained optimization test problems, of different structures and complexities, as well as five applications from MINPACK-2 collection, prove that the suggested algorithm is more efficient and more robust than the quasi-Newton diagonal algorithm retaining only the diagonal elements of the BFGS update, than the weak quasi-Newton diagonal algorithm, than the quasi-Cauchy diagonal algorithm, than the diagonal approximation of the Hessian by the least-change secant updating strategy and minimizing the trace of the matrix, than the Cauchy with Oren and Luenberger scaling algorithm in its complementary form (i.e. the Barzilai-Borwein algorithm), than the steepest descent algorithm, and than the classical BFGS algorithm. However, our algorithm is inferior to the limited memory BFGS algorithm (L-BFGS).  相似文献   

10.
《Optimization》2012,61(9):1387-1400
Although the Hesteness and Stiefel (HS) method is a well-known method, if an inexact line search is used, researches about its convergence rate are very rare. Recently, Zhang, Zhou and Li [Some descent three-term conjugate gradient methods and their global convergence, Optim. Method Softw. 22 (2007), pp. 697–711] proposed a three-term Hestenes–Stiefel method for unconstrained optimization problems. In this article, we investigate the convergence rate of this method. We show that the three-term HS method with the Wolfe line search will be n-step superlinearly and even quadratically convergent if some restart technique is used under reasonable conditions. Some numerical results are also reported to verify the theoretical results. Moreover, it is more efficient than the previous ones.  相似文献   

11.
New accelerated nonlinear conjugate gradient algorithms which are mainly modifications of Dai and Yuan’s for unconstrained optimization are proposed. Using the exact line search, the algorithm reduces to the Dai and Yuan conjugate gradient computational scheme. For inexact line search the algorithm satisfies the sufficient descent condition. Since the step lengths in conjugate gradient algorithms may differ from 1 by two orders of magnitude and tend to vary in a very unpredictable manner, the algorithms are equipped with an acceleration scheme able to improve the efficiency of the algorithms. Computational results for a set consisting of 750 unconstrained optimization test problems show that these new conjugate gradient algorithms substantially outperform the Dai-Yuan conjugate gradient algorithm and its hybrid variants, Hestenes-Stiefel, Polak-Ribière-Polyak, CONMIN conjugate gradient algorithms, limited quasi-Newton algorithm LBFGS and compare favorably with CG_DESCENT. In the frame of this numerical study the accelerated scaled memoryless BFGS preconditioned conjugate gradient ASCALCG algorithm proved to be more robust.  相似文献   

12.
Zhao  Ting  Liu  Hongwei  Liu  Zexian 《Numerical Algorithms》2021,87(4):1501-1534

In this paper, two new subspace minimization conjugate gradient methods based on p-regularization models are proposed, where a special scaled norm in p-regularization model is analyzed. Different choices of special scaled norm lead to different solutions to the p-regularized subproblem. Based on the analyses of the solutions in a two-dimensional subspace, we derive new directions satisfying the sufficient descent condition. With a modified nonmonotone line search, we establish the global convergence of the proposed methods under mild assumptions. R-linear convergence of the proposed methods is also analyzed. Numerical results show that, for the CUTEr library, the proposed methods are superior to four conjugate gradient methods, which were proposed by Hager and Zhang (SIAM J. Optim. 16(1):170–192, 2005), Dai and Kou (SIAM J. Optim. 23(1):296–320, 2013), Liu and Liu (J. Optim. Theory. Appl. 180(3):879–906, 2019) and Li et al. (Comput. Appl. Math. 38(1):2019), respectively.

  相似文献   

13.
《Optimization》2012,61(12):1457-1471
A modified Polak–Ribière–Polyak conjugate gradient algorithm which satisfies both the sufficient descent condition and the conjugacy condition is presented. These properties are independent of the line search. The algorithms use the standard Wolfe line search. Under standard assumptions, we show the global convergence of the algorithm. Numerical comparisons with conjugate gradient algorithms using a set of 750 unconstrained optimization problems, some of them from the CUTE library, show that this computational scheme outperforms the known Polak–Ribière–Polyak algorithm, as well as some other unconstrained optimization algorithms.  相似文献   

14.
We consider multi-step quasi-Newton methods for unconstrained optimization. These methods were introduced by Ford and Moghrabi (Appl. Math., vol. 50, pp. 305–323, 1994; Optimization Methods and Software, vol. 2, pp. 357–370, 1993), who showed how interpolating curves could be used to derive a generalization of the Secant Equation (the relation normally employed in the construction of quasi-Newton methods). One of the most successful of these multi-step methods makes use of the current approximation to the Hessian to determine the parameterization of the interpolating curve in the variable-space and, hence, the generalized updating formula. In this paper, we investigate new parameterization techniques to the approximate Hessian, in an attempt to determine a better Hessian approximation at each iteration and, thus, improve the numerical performance of such algorithms.  相似文献   

15.
Satisfying in the sufficient descent condition is a strength of a conjugate gradient method. Here, it is shown that under the Wolfe line search conditions the search directions generated by the memoryless BFGS conjugate gradient algorithm proposed by Shanno satisfy the sufficient descent condition for uniformly convex functions.  相似文献   

16.
For solving unconstrained minimization problems, quasi-Newton methods are popular iterative methods. The secant condition which employs only the gradient information is imposed on these methods. Several researchers paid attention to other secant conditions to get a better approximation of the Hessian matrix of the objective function. Recently, Zhang et al. [New quasi-Newton equation and related methods for unconstrained optimization, J. Optim. Theory Appl. 102 (1999) 147–167] and Zhang and Xu [Properties and numerical performance of quasi-Newton methods with modified quasi-Newton equations, J. Comput. Appl. Math. 137 (2001) 269–278] proposed the modified secant condition which uses both gradient and function value information in order to get a higher order accuracy in approximating the second curvature of the objective function. They showed the local and q-superlinear convergence property of the BFGS-like and DFP-like updates based on their proposed secant condition. In this paper, we incorporate one parameter into this secant condition to smoothly switch the standard secant condition and the secant condition of Zhang et al. We consider a modified Broyden family which includes the BFGS-like and the DFP-like updates proposed by Zhang et al. We prove the local and q-superlinear convergence of our method.  相似文献   

17.
The self-scaling quasi-Newton method solves an unconstrained optimization problem by scaling the Hessian approximation matrix before it is updated at each iteration to avoid the possible large eigenvalues in the Hessian approximation matrices of the objective function. It has been proved in the literature that this method has the global and superlinear convergence when the objective function is convex (or even uniformly convex). We propose to solve unconstrained nonconvex optimization problems by a self-scaling BFGS algorithm with nonmonotone linear search. Nonmonotone line search has been recognized in numerical practices as a competitive approach for solving large-scale nonlinear problems. We consider two different nonmonotone line search forms and study the global convergence of these nonmonotone self-scale BFGS algorithms. We prove that, under some weaker condition than that in the literature, both forms of the self-scaling BFGS algorithm are globally convergent for unconstrained nonconvex optimization problems.  相似文献   

18.
In this paper, we present a new hybrid conjugate gradient algorithm for unconstrained optimization. This method is a convex combination of Liu-Storey conjugate gradient method and Fletcher-Reeves conjugate gradient method. We also prove that the search direction of any hybrid conjugate gradient method, which is a convex combination of two conjugate gradient methods, satisfies the famous D-L conjugacy condition and in the same time accords with the Newton direction with the suitable condition. Furthermore, this property doesn't depend on any line search. Next, we also prove that, moduling the value of the parameter t,the Newton direction condition is equivalent to Dai-Liao conjugacy condition.The strong Wolfe line search conditions are used.The global convergence of this new method is proved.Numerical comparisons show that the present hybrid conjugate gradient algorithm is the efficient one.  相似文献   

19.
In this paper, the first two terms on the right-hand side of the Broyden–Fletcher–Goldfarb–Shanno update are scaled with a positive parameter, while the third one is also scaled with another positive parameter. These scaling parameters are determined by minimizing the measure function introduced by Byrd and Nocedal (SIAM J Numer Anal 26:727–739, 1989). The obtained algorithm is close to the algorithm based on clustering the eigenvalues of the Broyden–Fletcher–Goldfarb–Shanno approximation of the Hessian and on shifting its large eigenvalues to the left, but it is not superior to it. Under classical assumptions, the convergence is proved by using the trace and the determinant of the iteration matrix. By using a set of 80 unconstrained optimization test problems, it is proved that the algorithm minimizing the measure function of Byrd and Nocedal is more efficient and more robust than some other scaling Broyden–Fletcher–Goldfarb–Shanno algorithms, including the variants of Biggs (J Inst Math Appl 12:337–338, 1973), Yuan (IMA J Numer Anal 11:325–332, 1991), Oren and Luenberger (Manag Sci 20:845–862, 1974) and of Nocedal and Yuan (Math Program 61:19–37, 1993). However, it is less efficient than the algorithms based on clustering the eigenvalues of the iteration matrix and on shifting its large eigenvalues to the left, as shown by Andrei (J Comput Appl Math 332:26–44, 2018, Numer Algorithms 77:413–432, 2018).  相似文献   

20.
本文对凸函数在极值点的Hessian矩阵是秩亏一的情况下,给出了一类求解无约束优化问题的修正BFGS算法.算法的思想是对凸函数加上一个修正项,得到一个等价的模型,然后简化此模型得到一个修正的BFGS算法.文中证明了该算法是一个具有超线性收敛的算法,并且把修正的BFGS算法同Tensor方法进行了数值比较,证明了该算法对求解秩亏一的无约束优化问题更有效.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号